論文の概要: E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding
- arxiv url: http://arxiv.org/abs/2409.18111v1
- Date: Thu, 26 Sep 2024 17:53:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 21:27:33.332235
- Title: E.T. Bench: Towards Open-Ended Event-Level Video-Language Understanding
- Title(参考訳): E.T. Bench: オープンなイベントレベルビデオランゲージ理解を目指して
- Authors: Ye Liu, Zongyang Ma, Zhongang Qi, Yang Wu, Ying Shan, Chang Wen Chen,
- Abstract要約: E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark)は、イベントレベルのオープンな理解のための大規模ベンチマークである。
ベンチマークでは,8つの画像-LLMと12個のビデオ-LLMを広範囲に評価し,その結果から,粗い(ビデオレベル)理解のための最先端モデルが,きめ細かなタスクの解決に苦慮していることが判明した。
私たちのシンプルだが効果的なソリューションは、複数のシナリオで優れたパフォーマンスを示します。
- 参考スコア(独自算出の注目度): 57.630136434038384
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in Video Large Language Models (Video-LLMs) have demonstrated their great potential in general-purpose video understanding. To verify the significance of these models, a number of benchmarks have been proposed to diagnose their capabilities in different scenarios. However, existing benchmarks merely evaluate models through video-level question-answering, lacking fine-grained event-level assessment and task diversity. To fill this gap, we introduce E.T. Bench (Event-Level & Time-Sensitive Video Understanding Benchmark), a large-scale and high-quality benchmark for open-ended event-level video understanding. Categorized within a 3-level task taxonomy, E.T. Bench encompasses 7.3K samples under 12 tasks with 7K videos (251.4h total length) under 8 domains, providing comprehensive evaluations. We extensively evaluated 8 Image-LLMs and 12 Video-LLMs on our benchmark, and the results reveal that state-of-the-art models for coarse-level (video-level) understanding struggle to solve our fine-grained tasks, e.g., grounding event-of-interests within videos, largely due to the short video context length, improper time representations, and lack of multi-event training data. Focusing on these issues, we further propose a strong baseline model, E.T. Chat, together with an instruction-tuning dataset E.T. Instruct 164K tailored for fine-grained event-level understanding. Our simple but effective solution demonstrates superior performance in multiple scenarios.
- Abstract(参考訳): ビデオ大言語モデル(ビデオ-LLM)の最近の進歩は、汎用的なビデオ理解において、その大きな可能性を実証している。
これらのモデルの重要性を検証するために、異なるシナリオでそれらの能力を診断するために、多くのベンチマークが提案されている。
しかし、既存のベンチマークでは、単にビデオレベルの質問回答を通じてモデルを評価するだけで、きめ細かいイベントレベルの評価とタスクの多様性が欠如している。
このギャップを埋めるために、オープンなイベントレベルのビデオ理解のための大規模かつ高品質なベンチマークであるE.T. Bench(Event-Level & Time-Sensitive Video Understanding Benchmark)を紹介します。
E.T. Benchは3段階のタスク分類で分類され、12タスク以下の7.3Kサンプルと8ドメイン以下の7Kビデオ(総長さ251.4h)を包含し、包括的な評価を提供している。
提案手法は,映像の文脈長,不適切な時間表現,マルチイベントトレーニングデータの欠如など,粗い(映像レベル)理解のための最先端モデルを用いて,映像中の関心事のグラウンド化に苦しむ8つの画像-LLMと12個のビデオ-LLMをベンチマークで広範囲に評価した。
これらの問題に焦点をあて、より詳細なイベントレベルの理解に適した命令チューニングデータセットE.T. Instruct 164Kとともに、強力なベースラインモデルE.T. Chatを提案する。
私たちのシンプルだが効果的なソリューションは、複数のシナリオで優れたパフォーマンスを示します。
関連論文リスト
- Towards Event-oriented Long Video Understanding [101.48089908037888]
Event-Benchは、既存のデータセットとヒューマンアノテーションに基づいて構築された、イベント指向の長いビデオ理解ベンチマークである。
VIMは、統合されたイベント集約型ビデオ命令を用いて、ビデオMLLMを強化するコスト効率のよい方法である。
論文 参考訳(メタデータ) (2024-06-20T09:14:19Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
ビデオ理解はマルチモーダル大言語モデル(LMLM)にとって重要な次のステップである
合成ビデオ生成によるベンチマーク構築フレームワークであるVideoNIAH(Video Needle In A Haystack)を提案する。
我々は、プロプライエタリモデルとオープンソースモデルの両方を包括的に評価し、ビデオ理解能力の重大な違いを明らかにする。
論文 参考訳(メタデータ) (2024-06-13T17:50:05Z) - SPOT! Revisiting Video-Language Models for Event Understanding [31.49859545456809]
本稿では,既存のビデオ言語モデルのイベントレベルの相違点を識別する能力のベンチマークを行うSPOT Proberを紹介する。
これらの正負のキャプションで既存のビデオ言語モデルを評価した結果、操作されたイベントのほとんどを区別できないことがわかった。
そこで本研究では,これらの操作したイベントキャプションをハードネガティブなサンプルとしてプラグインし,イベント理解モデルの改善に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-21T18:43:07Z) - Perception Test: A Diagnostic Benchmark for Multimodal Video Models [78.64546291816117]
本稿では,事前学習したマルチモーダルモデルの知覚と推論能力を評価するために,新しいマルチモーダルビデオベンチマークを提案する。
知覚テストは、スキル(記憶、抽象化、物理学、セマンティックス)と、ビデオ、オーディオ、テキストモダリティ間の推論(記述的、説明的、予測的、反ファクト的)のタイプに焦点を当てている。
このベンチマークは、ゼロショット/少数ショットまたは限定的な微調整方式で、転送機能の事前訓練されたモデルを探索する。
論文 参考訳(メタデータ) (2023-05-23T07:54:37Z) - Revisiting the "Video" in Video-Language Understanding [56.15777956496518]
本稿では,ビデオ言語解析の新しいモデルであるアテンポラルプローブ(ATP)を提案する。
現在のビデオ言語ベンチマークの限界とポテンシャルを特徴付ける。
ATPをフルビデオレベル時間モデルに効果的に統合することで、効率と最先端の精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-03T17:57:33Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUEベンチマークは、幅広いビデオジャンル、ビデオの長さ、データボリューム、タスクの難易度をカバーすることを目的としている。
大規模なVidL事前学習による各種ベースライン法の評価を行った。
我々の最高のモデルと人間のパフォーマンスの間の大きなギャップは、先進的なVidLモデルの将来の研究を要求する。
論文 参考訳(メタデータ) (2021-06-08T18:34:21Z) - VIOLIN: A Large-Scale Dataset for Video-and-Language Inference [103.7457132841367]
ビデオとテキストのマルチモーダル理解のための新しいタスク, Video-and-Language Inferenceを導入する。
サブタイトルを前提としたビデオクリップと、そのビデオコンテンツに基づいて自然言語仮説とをペアリングすると、モデルは、その仮説が所定のビデオクリップに関連付けられているか、矛盾しているかを推測する必要がある。
このタスクには、Violin(VIdeO-and-Language Inference)という名の新しい大規模データセットが導入された。
論文 参考訳(メタデータ) (2020-03-25T20:39:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。