Robot See Robot Do: Imitating Articulated Object Manipulation with Monocular 4D Reconstruction
- URL: http://arxiv.org/abs/2409.18121v1
- Date: Thu, 26 Sep 2024 17:57:16 GMT
- Title: Robot See Robot Do: Imitating Articulated Object Manipulation with Monocular 4D Reconstruction
- Authors: Justin Kerr, Chung Min Kim, Mingxuan Wu, Brent Yi, Qianqian Wang, Ken Goldberg, Angjoo Kanazawa,
- Abstract summary: This work develops a method for imitating articulated object manipulation from a single monocular RGB human demonstration.
We first propose 4D Differentiable Part Models (4D-DPM), a method for recovering 3D part motion from a monocular video.
Given this 4D reconstruction, the robot replicates object trajectories by planning bimanual arm motions that induce the demonstrated object part motion.
We evaluate 4D-DPM's 3D tracking accuracy on ground truth annotated 3D part trajectories and RSRD's physical execution performance on 9 objects across 10 trials each on a bimanual YuMi robot.
- Score: 51.49400490437258
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Humans can learn to manipulate new objects by simply watching others; providing robots with the ability to learn from such demonstrations would enable a natural interface specifying new behaviors. This work develops Robot See Robot Do (RSRD), a method for imitating articulated object manipulation from a single monocular RGB human demonstration given a single static multi-view object scan. We first propose 4D Differentiable Part Models (4D-DPM), a method for recovering 3D part motion from a monocular video with differentiable rendering. This analysis-by-synthesis approach uses part-centric feature fields in an iterative optimization which enables the use of geometric regularizers to recover 3D motions from only a single video. Given this 4D reconstruction, the robot replicates object trajectories by planning bimanual arm motions that induce the demonstrated object part motion. By representing demonstrations as part-centric trajectories, RSRD focuses on replicating the demonstration's intended behavior while considering the robot's own morphological limits, rather than attempting to reproduce the hand's motion. We evaluate 4D-DPM's 3D tracking accuracy on ground truth annotated 3D part trajectories and RSRD's physical execution performance on 9 objects across 10 trials each on a bimanual YuMi robot. Each phase of RSRD achieves an average of 87% success rate, for a total end-to-end success rate of 60% across 90 trials. Notably, this is accomplished using only feature fields distilled from large pretrained vision models -- without any task-specific training, fine-tuning, dataset collection, or annotation. Project page: https://robot-see-robot-do.github.io
Related papers
- Dynamic 3D Gaussian Tracking for Graph-Based Neural Dynamics Modeling [10.247075501610492]
We introduce a framework to learn object dynamics directly from multi-view RGB videos.
We train a particle-based dynamics model using Graph Neural Networks.
Our method can predict object motions under varying initial configurations and unseen robot actions.
arXiv Detail & Related papers (2024-10-24T17:02:52Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - DITTO: Demonstration Imitation by Trajectory Transformation [31.930923345163087]
In this work, we address the problem of one-shot imitation from a single human demonstration, given by an RGB-D video recording.
We propose a two-stage process. In the first stage we extract the demonstration trajectory offline. This entails segmenting manipulated objects and determining their relative motion in relation to secondary objects such as containers.
In the online trajectory generation stage, we first re-detect all objects, then warp the demonstration trajectory to the current scene and execute it on the robot.
arXiv Detail & Related papers (2024-03-22T13:46:51Z) - Naturalistic Robot Arm Trajectory Generation via Representation Learning [4.7682079066346565]
Integration of manipulator robots in household environments suggests a need for more predictable human-like robot motion.
One method of generating naturalistic motion trajectories is via imitation of human demonstrators.
This paper explores a self-supervised imitation learning method using an autoregressive neural network for an assistive drinking task.
arXiv Detail & Related papers (2023-09-14T09:26:03Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
We develop a framework for extracting agent-agnostic action representations from human videos.
Our framework is based on predicting plausible human hand trajectories.
We deploy the trained model zero-shot for physical robot manipulation tasks.
arXiv Detail & Related papers (2023-02-03T21:39:52Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - Learning Object Manipulation Skills from Video via Approximate
Differentiable Physics [27.923004421974156]
We teach robots to perform simple object manipulation tasks by watching a single video demonstration.
A differentiable scene ensures perceptual fidelity between the 3D scene and the 2D video.
We evaluate our approach on a 3D reconstruction task that consists of 54 video demonstrations.
arXiv Detail & Related papers (2022-08-03T10:21:47Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - Learning 3D Dynamic Scene Representations for Robot Manipulation [21.6131570689398]
3D scene representation for robot manipulation should capture three key object properties: permanency, completeness, and continuity.
We introduce 3D Dynamic Representation (DSR), a 3D scene representation that simultaneously discovers, tracks, reconstructs objects, and predicts their dynamics.
We propose DSR-Net, which learns to aggregate visual observations over multiple interactions to gradually build and refine DSR.
arXiv Detail & Related papers (2020-11-03T19:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.