3DFlowAction: Learning Cross-Embodiment Manipulation from 3D Flow World Model
- URL: http://arxiv.org/abs/2506.06199v1
- Date: Fri, 06 Jun 2025 16:00:31 GMT
- Title: 3DFlowAction: Learning Cross-Embodiment Manipulation from 3D Flow World Model
- Authors: Hongyan Zhi, Peihao Chen, Siyuan Zhou, Yubo Dong, Quanxi Wu, Lei Han, Mingkui Tan,
- Abstract summary: A key reason is the lack of a large and uniform dataset for teaching robots manipulation skills.<n>Current robot datasets often record robot action in different action spaces within a simple scene.<n>We learn a 3D flow world model from both human and robot manipulation data.
- Score: 40.730112146035076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulation has long been a challenging task for robots, while humans can effortlessly perform complex interactions with objects, such as hanging a cup on the mug rack. A key reason is the lack of a large and uniform dataset for teaching robots manipulation skills. Current robot datasets often record robot action in different action spaces within a simple scene. This hinders the robot to learn a unified and robust action representation for different robots within diverse scenes. Observing how humans understand a manipulation task, we find that understanding how the objects should move in the 3D space is a critical clue for guiding actions. This clue is embodiment-agnostic and suitable for both humans and different robots. Motivated by this, we aim to learn a 3D flow world model from both human and robot manipulation data. This model predicts the future movement of the interacting objects in 3D space, guiding action planning for manipulation. Specifically, we synthesize a large-scale 3D optical flow dataset, named ManiFlow-110k, through a moving object auto-detect pipeline. A video diffusion-based world model then learns manipulation physics from these data, generating 3D optical flow trajectories conditioned on language instructions. With the generated 3D object optical flow, we propose a flow-guided rendering mechanism, which renders the predicted final state and leverages GPT-4o to assess whether the predicted flow aligns with the task description. This equips the robot with a closed-loop planning ability. Finally, we consider the predicted 3D optical flow as constraints for an optimization policy to determine a chunk of robot actions for manipulation. Extensive experiments demonstrate strong generalization across diverse robotic manipulation tasks and reliable cross-embodiment adaptation without hardware-specific training.
Related papers
- Object-centric 3D Motion Field for Robot Learning from Human Videos [56.9436352861611]
We propose to use object-centric 3D motion field to represent actions for robot learning from human videos.<n>We present a novel framework for extracting this representation from videos for zero-shot control.<n> Experiments show that our method reduces 3D motion estimation error by over 50% compared to the latest method.
arXiv Detail & Related papers (2025-06-04T17:59:06Z) - VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation [53.63540587160549]
VidBot is a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos.<n> VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
arXiv Detail & Related papers (2025-03-10T10:04:58Z) - Robot See Robot Do: Imitating Articulated Object Manipulation with Monocular 4D Reconstruction [51.49400490437258]
This work develops a method for imitating articulated object manipulation from a single monocular RGB human demonstration.
We first propose 4D Differentiable Part Models (4D-DPM), a method for recovering 3D part motion from a monocular video.
Given this 4D reconstruction, the robot replicates object trajectories by planning bimanual arm motions that induce the demonstrated object part motion.
We evaluate 4D-DPM's 3D tracking accuracy on ground truth annotated 3D part trajectories and RSRD's physical execution performance on 9 objects across 10 trials each on a bimanual YuMi robot.
arXiv Detail & Related papers (2024-09-26T17:57:16Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - DexArt: Benchmarking Generalizable Dexterous Manipulation with
Articulated Objects [8.195608430584073]
We propose a new benchmark called DexArt, which involves Dexterous manipulation with Articulated objects in a physical simulator.
Our main focus is to evaluate the generalizability of the learned policy on unseen articulated objects.
We use Reinforcement Learning with 3D representation learning to achieve generalization.
arXiv Detail & Related papers (2023-05-09T18:30:58Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
We develop a framework for extracting agent-agnostic action representations from human videos.
Our framework is based on predicting plausible human hand trajectories.
We deploy the trained model zero-shot for physical robot manipulation tasks.
arXiv Detail & Related papers (2023-02-03T21:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.