論文の概要: Decomposable Transformer Point Processes
- arxiv url: http://arxiv.org/abs/2409.18158v1
- Date: Thu, 26 Sep 2024 13:22:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 15:41:17.987808
- Title: Decomposable Transformer Point Processes
- Title(参考訳): 分解可能な変圧器点過程
- Authors: Aristeidis Panos,
- Abstract要約: 本稿では,注目に基づくアーキテクチャの利点の維持と,薄型化アルゴリズムの限界を回避する枠組みを提案する。
提案手法は,その履歴が与えられたシーケンスの次の事象を予測する上で,最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 2.1756081703276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The standard paradigm of modeling marked point processes is by parameterizing the intensity function using an attention-based (Transformer-style) architecture. Despite the flexibility of these methods, their inference is based on the computationally intensive thinning algorithm. In this work, we propose a framework where the advantages of the attention-based architecture are maintained and the limitation of the thinning algorithm is circumvented. The framework depends on modeling the conditional distribution of inter-event times with a mixture of log-normals satisfying a Markov property and the conditional probability mass function for the marks with a Transformer-based architecture. The proposed method attains state-of-the-art performance in predicting the next event of a sequence given its history. The experiments also reveal the efficacy of the methods that do not rely on the thinning algorithm during inference over the ones they do. Finally, we test our method on the challenging long-horizon prediction task and find that it outperforms a baseline developed specifically for tackling this task; importantly, inference requires just a fraction of time compared to the thinning-based baseline.
- Abstract(参考訳): マークポイントプロセスのモデリングの標準パラダイムは、注意に基づく(トランスフォーマースタイル)アーキテクチャを用いて強度関数をパラメータ化することである。
これらの手法の柔軟性にもかかわらず、それらの推論は計算集約的な薄化アルゴリズムに基づいている。
本研究では,注目度に基づくアーキテクチャの利点の維持と,薄型化アルゴリズムの限界を回避する枠組みを提案する。
このフレームワークは、マルコフ特性を満たす対数正規分布と、トランスフォーマーアーキテクチャを用いたマークに対する条件確率質量関数の混合により、時間間の条件分布をモデル化することに依存する。
提案手法は,その履歴が与えられたシーケンスの次の事象を予測する上で,最先端の性能を実現する。
実験では、推論中に薄型アルゴリズムに依存しない手法の有効性も明らかにした。
最後に,本手法を長軸予測課題に適用し,本課題に特化して開発されたベースラインよりも優れていることを示す。
関連論文リスト
- The Stochastic Conjugate Subgradient Algorithm For Kernel Support Vector Machines [1.738375118265695]
本稿では,カーネルサポートベクトルマシン(SVM)に特化して設計された革新的な手法を提案する。
イテレーション毎のイテレーションを高速化するだけでなく、従来のSFO技術と比較して収束度も向上する。
実験の結果,提案アルゴリズムはSFO法のスケーラビリティを維持できるだけでなく,潜在的に超越していることが示された。
論文 参考訳(メタデータ) (2024-07-30T17:03:19Z) - Trainability maximization using estimation of distribution algorithms assisted by surrogate modelling for quantum architecture search [8.226785409557598]
量子アーキテクチャサーチ(QAS)は、量子パラメトリック回路の構成を最適化するだけでなく、変分量子アルゴリズムのパラメータも最適化する。
本稿では,(1)粗悪な性能のアーキテクチャを積極的に破棄する評価プロセスのオンラインサロゲートモデルによる測定数を削減し,(2)BPが存在する場合の回路のトレーニングを避けることを目的とした。
我々は、変分量子固有解法の提案を実験的に検証し、我々のアルゴリズムがハミルトニアンの文献でこれまで提案されていた解を見つけることができることを示した。
論文 参考訳(メタデータ) (2024-07-29T15:22:39Z) - Provably Efficient Learning in Partially Observable Contextual Bandit [4.910658441596583]
古典的帯域幅アルゴリズムの改善に因果境界をどのように適用できるかを示す。
本研究は,実世界の応用における文脈的包括的エージェントの性能を高める可能性を秘めている。
論文 参考訳(メタデータ) (2023-08-07T13:24:50Z) - Diffusion Action Segmentation [63.061058214427085]
本稿では,このような反復的洗練の本質的な精神を共用した拡散モデルによる新しい枠組みを提案する。
このフレームワークでは、入力された映像の特徴を条件としてランダムノイズから行動予測を反復的に生成する。
論文 参考訳(メタデータ) (2023-03-31T10:53:24Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
反復的洗練は表現学習に有用なパラダイムである。
トレーニングの安定性とトラクタビリティを向上させる暗黙の差別化アプローチを開発する。
論文 参考訳(メタデータ) (2022-07-02T10:00:35Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Gradient-Based Learning of Discrete Structured Measurement Operators for
Signal Recovery [16.740247586153085]
本稿では、勾配に基づく学習を利用して離散最適化問題を解く方法について述べる。
GLODISMO (Gradient-based Learning of DIscrete Structured Measurement Operators) によるアプローチの定式化
いくつかの信号回復アプリケーションにおいて,GLODISMOの性能と柔軟性を実証的に示す。
論文 参考訳(メタデータ) (2022-02-07T18:27:08Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
非定常環境におけるポリシーを効率的に学習するアルゴリズムを導入する。
これは、リアルタイム、高信頼な変更点検出統計において、潜在的に無限のデータストリームと計算を解析する。
i) このアルゴリズムは, 予期せぬ状況変化が検出されるまでの遅延を最小限に抑え, 迅速な応答を可能にする。
論文 参考訳(メタデータ) (2021-05-20T01:57:52Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
局所的な特徴とロバストな推定アルゴリズムの包括的なベンチマークを導入する。
パイプラインのモジュール構造は、さまざまなメソッドの容易な統合、構成、組み合わせを可能にします。
適切な設定で、古典的な解決策は依然として芸術の知覚された状態を上回る可能性があることを示す。
論文 参考訳(メタデータ) (2020-03-03T15:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。