Using dynamic loss weighting to boost improvements in forecast stability
- URL: http://arxiv.org/abs/2409.18267v1
- Date: Thu, 26 Sep 2024 20:21:46 GMT
- Title: Using dynamic loss weighting to boost improvements in forecast stability
- Authors: Daan Caljon, Jeff Vercauteren, Simon De Vos, Wouter Verbeke, Jente Van Belle,
- Abstract summary: Rolling origin forecast instability refers to variability in forecasts for a specific period induced by updating the forecast.
In this paper, we empirically investigate whether further improvements in stability can be obtained without compromising accuracy by applying dynamic loss weighting algorithms.
- Score: 0.9332308328407303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rolling origin forecast instability refers to variability in forecasts for a specific period induced by updating the forecast when new data points become available. Recently, an extension to the N-BEATS model for univariate time series point forecasting was proposed to include forecast stability as an additional optimization objective, next to accuracy. It was shown that more stable forecasts can be obtained without harming accuracy by minimizing a composite loss function that contains both a forecast error and a forecast instability component, with a static hyperparameter to control the impact of stability. In this paper, we empirically investigate whether further improvements in stability can be obtained without compromising accuracy by applying dynamic loss weighting algorithms, which change the loss weights during training. We show that some existing dynamic loss weighting methods achieve this objective. However, our proposed extension to the Random Weighting approach -- Task-Aware Random Weighting -- shows the best performance.
Related papers
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting.
Our approach involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on present data.
When discrepancies arise between the forecasting and detection models, the forecasting model undergoes more substantial updates.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Predictability Analysis of Regression Problems via Conditional Entropy Estimations [1.8913544072080544]
Conditional entropy estimators are developed to assess predictability in regression problems.
Experiments on synthesized and real-world datasets demonstrate the robustness and utility of these estimators.
arXiv Detail & Related papers (2024-06-06T07:59:19Z) - Uncertainty-boosted Robust Video Activity Anticipation [72.14155465769201]
Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision to autonomous driving.
Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored.
We propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results.
arXiv Detail & Related papers (2024-04-29T12:31:38Z) - Stable Update of Regression Trees [0.0]
We focus on the stability of an inherently explainable machine learning method, namely regression trees.
We propose a regularization method, where data points are weighted based on the uncertainty in the initial model.
Results show that the proposed update method improves stability while achieving similar or better predictive performance.
arXiv Detail & Related papers (2024-02-21T09:41:56Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Minimax Optimal Estimation of Stability Under Distribution Shift [8.893526921869137]
We analyze the stability of a system under distribution shift.
The stability measure is defined in terms of a more intuitive quantity: the level of acceptable performance degradation.
Our characterization of the minimax convergence rate shows that evaluating stability against large performance degradation incurs a statistical cost.
arXiv Detail & Related papers (2022-12-13T02:40:30Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Fine-Grained Analysis of Stability and Generalization for Stochastic
Gradient Descent [55.85456985750134]
We introduce a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates.
This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting.
To our best knowledge, this gives the firstever-known stability and generalization for SGD with even non-differentiable loss functions.
arXiv Detail & Related papers (2020-06-15T06:30:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.