Lightweight, Uncertainty-Aware Conformalized Visual Odometry
- URL: http://arxiv.org/abs/2303.02207v1
- Date: Fri, 3 Mar 2023 20:37:55 GMT
- Title: Lightweight, Uncertainty-Aware Conformalized Visual Odometry
- Authors: Alex C. Stutts, Danilo Erricolo, Theja Tulabandhula, Amit Ranjan
Trivedi
- Abstract summary: Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
- Score: 2.429910016019183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven visual odometry (VO) is a critical subroutine for autonomous edge
robotics, and recent progress in the field has produced highly accurate point
predictions in complex environments. However, emerging autonomous edge robotics
devices like insect-scale drones and surgical robots lack a computationally
efficient framework to estimate VO's predictive uncertainties. Meanwhile, as
edge robotics continue to proliferate into mission-critical application spaces,
awareness of model's the predictive uncertainties has become crucial for
risk-aware decision-making. This paper addresses this challenge by presenting a
novel, lightweight, and statistically robust framework that leverages conformal
inference (CI) to extract VO's uncertainty bands. Our approach represents the
uncertainties using flexible, adaptable, and adjustable prediction intervals
that, on average, guarantee the inclusion of the ground truth across all
degrees of freedom (DOF) of pose estimation. We discuss the architectures of
generative deep neural networks for estimating multivariate uncertainty bands
along with point (mean) prediction. We also present techniques to improve the
uncertainty estimation accuracy, such as leveraging Monte Carlo dropout
(MC-dropout) for data augmentation. Finally, we propose a novel training loss
function that combines interval scoring and calibration loss with traditional
training metrics--mean-squared error and KL-divergence--to improve
uncertainty-aware learning. Our simulation results demonstrate that the
presented framework consistently captures true uncertainty in pose estimations
across different datasets, estimation models, and applied noise types,
indicating its wide applicability.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
This paper introduces a benchmark for predictive uncertainty quantification in BEV segmentation.
It focuses on the effectiveness of predicted uncertainty in identifying misclassified and out-of-distribution pixels, as well as calibration.
We propose the Uncertainty-Focal-Cross-Entropy loss, designed for highly imbalanced data, which consistently improves the segmentation quality and calibration.
arXiv Detail & Related papers (2024-05-31T16:32:46Z) - Uncertainty-boosted Robust Video Activity Anticipation [72.14155465769201]
Video activity anticipation aims to predict what will happen in the future, embracing a broad application prospect ranging from robot vision to autonomous driving.
Despite the recent progress, the data uncertainty issue, reflected as the content evolution process and dynamic correlation in event labels, has been somehow ignored.
We propose an uncertainty-boosted robust video activity anticipation framework, which generates uncertainty values to indicate the credibility of the anticipation results.
arXiv Detail & Related papers (2024-04-29T12:31:38Z) - Conformalized Multimodal Uncertainty Regression and Reasoning [0.9205582989348333]
This paper introduces a lightweight uncertainty estimator capable of predicting multimodal (disjoint) uncertainty bounds.
We specifically discuss its application for visual odometry (VO), where environmental features such as flying domain symmetries can result in multimodal uncertainties.
arXiv Detail & Related papers (2023-09-20T02:40:59Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
We propose a novel approach for uncertainty quantification via ensembles, called Random Activation Functions (RAFs) Ensemble.
RAFs Ensemble outperforms state-of-the-art ensemble uncertainty quantification methods on both synthetic and real-world datasets.
arXiv Detail & Related papers (2023-02-28T13:17:56Z) - Uncertainty Estimation based on Geometric Separation [13.588210692213568]
In machine learning, accurately predicting the probability that a specific input is correct is crucial for risk management.
We put forward a novel geometric-based approach for improving uncertainty estimations in machine learning models.
arXiv Detail & Related papers (2023-01-11T13:19:24Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
We propose an efficient framework for predictive uncertainty estimation in NNs deployed on embedded edge systems.
The framework is built from the ground up to provide predictive uncertainty based only on one forward pass.
Our approach not only obtains robust and accurate uncertainty estimations but also outperforms state-of-the-art methods in terms of systems performance.
arXiv Detail & Related papers (2021-02-11T11:44:32Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
Existing methods can quantify the error in the target estimation, but they tend to underestimate it.
We propose a new separable formulation for the estimation of a signal and of its uncertainty, avoiding the effect of overfitting.
We demonstrate that the proposed method outperforms a state-of-the-art technique for signal and uncertainty estimation.
arXiv Detail & Related papers (2020-11-03T12:11:27Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.