DRL-STNet: Unsupervised Domain Adaptation for Cross-modality Medical Image Segmentation via Disentangled Representation Learning
- URL: http://arxiv.org/abs/2409.18340v1
- Date: Thu, 26 Sep 2024 23:30:40 GMT
- Title: DRL-STNet: Unsupervised Domain Adaptation for Cross-modality Medical Image Segmentation via Disentangled Representation Learning
- Authors: Hui Lin, Florian Schiffers, Santiago López-Tapia, Neda Tavakoli, Daniel Kim, Aggelos K. Katsaggelos,
- Abstract summary: Unsupervised domain adaptation (UDA) is essential for medical image segmentation, especially in cross-modality data scenarios.
This paper presents DRL-STNet, a novel framework for cross-modality medical image segmentation.
The proposed framework exhibits superior performance in abdominal organ segmentation on the FLARE challenge dataset.
- Score: 14.846510957922114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised domain adaptation (UDA) is essential for medical image segmentation, especially in cross-modality data scenarios. UDA aims to transfer knowledge from a labeled source domain to an unlabeled target domain, thereby reducing the dependency on extensive manual annotations. This paper presents DRL-STNet, a novel framework for cross-modality medical image segmentation that leverages generative adversarial networks (GANs), disentangled representation learning (DRL), and self-training (ST). Our method leverages DRL within a GAN to translate images from the source to the target modality. Then, the segmentation model is initially trained with these translated images and corresponding source labels and then fine-tuned iteratively using a combination of synthetic and real images with pseudo-labels and real labels. The proposed framework exhibits superior performance in abdominal organ segmentation on the FLARE challenge dataset, surpassing state-of-the-art methods by 11.4% in the Dice similarity coefficient and by 13.1% in the Normalized Surface Dice metric, achieving scores of 74.21% and 80.69%, respectively. The average running time is 41 seconds, and the area under the GPU memory-time curve is 11,292 MB. These results indicate the potential of DRL-STNet for enhancing cross-modality medical image segmentation tasks.
Related papers
- ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - MS-MT: Multi-Scale Mean Teacher with Contrastive Unpaired Translation
for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation [11.100048696665496]
unsupervised domain adaptation (UDA) methods have achieved promising cross-modality segmentation performance.
We propose a multi-scale self-ensembling based UDA framework for automatic segmentation of two key brain structures.
Our method demonstrates promising segmentation performance with a mean Dice score of 83.8% and 81.4%.
arXiv Detail & Related papers (2023-03-28T08:55:00Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - COSMOS: Cross-Modality Unsupervised Domain Adaptation for 3D Medical
Image Segmentation based on Target-aware Domain Translation and Iterative
Self-Training [6.513315990156929]
We propose a self-training based unsupervised domain adaptation framework for 3D medical image segmentation named COSMOS.
Our target-aware contrast conversion network translates source domain annotated T1 MRI to pseudo T2 MRI to enable segmentation training on target domain.
COSMOS won the 1textsuperscriptst place in the Cross-Modality Domain Adaptation (crossMoDA) challenge held in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021)
arXiv Detail & Related papers (2022-03-30T18:00:07Z) - CrossMoDA 2021 challenge: Benchmark of Cross-Modality Domain Adaptation
techniques for Vestibular Schwnannoma and Cochlea Segmentation [43.372468317829004]
Domain Adaptation (DA) has recently raised strong interests in the medical imaging community.
To tackle these limitations, the Cross-Modality Domain Adaptation (crossMoDA) challenge was organised.
CrossMoDA is the first large and multi-class benchmark for unsupervised cross-modality DA.
arXiv Detail & Related papers (2022-01-08T14:00:34Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Privacy Preserving Domain Adaptation for Semantic Segmentation of
Medical Images [13.693640425403636]
Unsupervised domain adaptation (UDA) is proposed to adapt a model to new modalities using solely unlabeled target domain data.
We develop an algorithm for UDA in a privacy-constrained setting, where the source domain data is inaccessible.
We demonstrate the effectiveness of our algorithm by comparing it to state-of-the-art medical image semantic segmentation approaches.
arXiv Detail & Related papers (2021-01-02T22:12:42Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.