論文の概要: A3: Active Adversarial Alignment for Source-Free Domain Adaptation
- arxiv url: http://arxiv.org/abs/2409.18418v1
- Date: Mon, 7 Oct 2024 18:13:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:31:22.300461
- Title: A3: Active Adversarial Alignment for Source-Free Domain Adaptation
- Title(参考訳): A3: ソースフリーなドメイン適応のためのアクティブな逆アライメント
- Authors: Chrisantus Eze, Christopher Crick,
- Abstract要約: Unsupervised domain adapt (UDA) は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的としている。
最近の研究は、ターゲットデータのみが利用可能な、ソースフリーのUDAに焦点を当てている。
本研究では, 自己教師型学習, 対人訓練, アクティブラーニングを組み合わせた, 頑健なソースレスUDAのための新しいフレームワークであるActive Adversarial Alignment (A3)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain. Recent works have focused on source-free UDA, where only target data is available. This is challenging as models rely on noisy pseudo-labels and struggle with distribution shifts. We propose Active Adversarial Alignment (A3), a novel framework combining self-supervised learning, adversarial training, and active learning for robust source-free UDA. A3 actively samples informative and diverse data using an acquisition function for training. It adapts models via adversarial losses and consistency regularization, aligning distributions without source data access. A3 advances source-free UDA through its synergistic integration of active and adversarial learning for effective domain alignment and noise reduction.
- Abstract(参考訳): Unsupervised domain adapt (UDA) は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的としている。
最近の研究は、ターゲットデータのみが利用可能な、ソースフリーのUDAに焦点を当てている。
モデルはノイズの多い擬似ラベルに依存し、分散シフトに苦労するため、これは難しい。
本研究では, 自己教師型学習, 対人訓練, アクティブラーニングを組み合わせた, 頑健なソースレスUDAのための新しいフレームワークであるActive Adversarial Alignment (A3)を提案する。
A3は、学習のための取得機能を使用して、情報的かつ多様なデータを積極的にサンプリングする。
敵の損失と一貫性の規則化を通じてモデルを適応し、ソースデータアクセスなしで分散を整列する。
A3は、効果的なドメインアライメントとノイズリダクションのためのアクティブおよび逆学習の相乗的統合を通じて、ソースフリーなUDAを進化させる。
関連論文リスト
- Dynamic Retraining-Updating Mean Teacher for Source-Free Object Detection [8.334498654271371]
Unsupervised domain adapt (UDA) は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的としている。
本研究では、ラベル付きソースデータを用いることなく、ソース学習された検出器をラベル付きターゲットドメインに適応させる、ソースフリーなオブジェクト検出(SFOD)に焦点を当てる。
論文 参考訳(メタデータ) (2024-07-23T14:12:57Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
医用画像セグメンテーションのための2段階のソースフリードメイン適応(SFDA)フレームワークを提案する。
プロトタイプアンコールされた特徴アライメントの段階では,まず,事前学習した画素ワイド分類器の重みを原プロトタイプとして利用する。
そこで,本研究では,目標となる特徴とクラスプロトタイプとの整合性を期待するコストを最小化し,双方向輸送を導入する。
論文 参考訳(メタデータ) (2023-07-19T06:07:12Z) - ADAS: A Simple Active-and-Adaptive Baseline for Cross-Domain 3D Semantic
Segmentation [38.66509154973051]
本研究では,よく訓練された3次元セグメンテーションモデルの弱いクロスドメイン一般化能力を高めるために,アクティブ・アンド・アダプティブ(ADAS)ベースラインを提案する。
ADASは、有効適応のために、ソースドメインとターゲットドメインの両方から最大不変サブセットを選択するアクティブサンプリング操作を実行する。
1) 対象ドメインからのすべてのサンプルがラベル付けされていないことを意味するUnsupervised Domain Adaptation (UDA)、2) Unsupervised Few-shot Domain Adaptation (UFDA)、つまり、ラベル付けされていないサンプルがラベル付けされていないターゲットドメインでのみ利用可能であることを意味する。
論文 参考訳(メタデータ) (2022-12-20T16:17:40Z) - Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised
Domain Adaptation [88.5448806952394]
我々は、対象ドメインのラベル付きデータと対象ドメインのラベルなしデータを用いて、対象ドメインの分類器を学習する、教師なしドメイン適応(UDA)を考える。
ラベル付きソースとターゲットデータの特徴を学習し,ラベル付きソースデータに微調整を行うコントラスト事前学習は,強いUDA手法と競合することを示す。
論文 参考訳(メタデータ) (2022-04-01T16:56:26Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Distill and Fine-tune: Effective Adaptation from a Black-box Source
Model [138.12678159620248]
Unsupervised Domain Adapt (UDA) は、既存のラベル付きデータセット (source) の知識を新しいラベル付きデータセット (target) に転送することを目的としています。
Distill and Fine-tune (Dis-tune) という新しい二段階適応フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-04T05:29:05Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
既存のUnsupervised Domain Adaptation (UDA)メソッドは、トレーニング中にソースとターゲットのドメインデータを同時に利用できると仮定する。
訓練済みのソースモデルは、よく知られたドメインシフトの問題により、ターゲットに対して性能が悪くても、常に利用可能であると考えられている。
適応型ノイズフィルタリングと擬似ラベル改良に取り組むための統一手法を提案する。
論文 参考訳(メタデータ) (2021-03-29T22:18:34Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised Adapt Adaptation (UDA) は、関連性のある異なるラベル付きソースドメインから新しいラベルなしターゲットドメインへの知識の転送を目標としている。
既存のudaメソッドの多くはソースデータへのアクセスを必要としており、プライバシ上の懸念からデータが機密で共有できない場合は適用できない。
本稿では、ソースデータにアクセスする代わりに、トレーニング済みの分類モデルのみを用いて現実的な設定に取り組むことを目的とする。
論文 参考訳(メタデータ) (2020-12-14T07:28:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。