Robust Network Learning via Inverse Scale Variational Sparsification
- URL: http://arxiv.org/abs/2409.18419v1
- Date: Fri, 27 Sep 2024 03:17:35 GMT
- Title: Robust Network Learning via Inverse Scale Variational Sparsification
- Authors: Zhiling Zhou, Zirui Liu, Chengming Xu, Yanwei Fu, Xinwei Sun,
- Abstract summary: We introduce an inverse scale variational sparsification framework within a time-continuous inverse scale space formulation.
Unlike frequency-based methods, our approach not only removes noise by smoothing small-scale features.
We show the efficacy of our approach through enhanced robustness against various noise types.
- Score: 55.64935887249435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While neural networks have made significant strides in many AI tasks, they remain vulnerable to a range of noise types, including natural corruptions, adversarial noise, and low-resolution artifacts. Many existing approaches focus on enhancing robustness against specific noise types, limiting their adaptability to others. Previous studies have addressed general robustness by adopting a spectral perspective, which tends to blur crucial features like texture and object contours. Our proposed solution, however, introduces an inverse scale variational sparsification framework within a time-continuous inverse scale space formulation. This framework progressively learns finer-scale features by discerning variational differences between pixels, ultimately preserving only large-scale features in the smoothed image. Unlike frequency-based methods, our approach not only removes noise by smoothing small-scale features where corruptions often occur but also retains high-contrast details such as textures and object contours. Moreover, our framework offers simplicity and efficiency in implementation. By integrating this algorithm into neural network training, we guide the model to prioritize learning large-scale features. We show the efficacy of our approach through enhanced robustness against various noise types.
Related papers
- Hierarchical Randomized Smoothing [94.59984692215426]
Randomized smoothing is a powerful framework for making models provably robust against small changes to their inputs.
We introduce hierarchical randomized smoothing: We partially smooth objects by adding random noise only on a randomly selected subset of their entities.
We experimentally demonstrate the importance of hierarchical smoothing in image and node classification, where it yields superior robustness-accuracy trade-offs.
arXiv Detail & Related papers (2023-10-24T22:24:44Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - PRISTA-Net: Deep Iterative Shrinkage Thresholding Network for Coded
Diffraction Patterns Phase Retrieval [6.982256124089]
Phase retrieval is a challenge nonlinear inverse problem in computational imaging and image processing.
We have developed PRISTA-Net, a deep unfolding network based on the first-order iterative threshold threshold algorithm (ISTA)
All parameters in the proposed PRISTA-Net framework, including the nonlinear transformation, threshold, and step size, are learned-to-end instead of being set.
arXiv Detail & Related papers (2023-09-08T07:37:15Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Ambiguity in solving imaging inverse problems with deep learning based
operators [0.0]
Large convolutional neural networks have been widely used as tools for image deblurring.
Image deblurring is mathematically modeled as an ill-posed inverse problem and its solution is difficult to approximate when noise affects the data.
In this paper, we propose some strategies to improve stability without losing to much accuracy to deblur images with deep-learning based methods.
arXiv Detail & Related papers (2023-05-31T12:07:08Z) - Multi-Frequency-Aware Patch Adversarial Learning for Neural Point Cloud
Rendering [7.522462414919854]
We present a neural point cloud rendering pipeline through a novel multi-frequency-aware patch adversarial learning framework.
The proposed approach aims to improve the rendering realness by minimizing the spectrum discrepancy between real and synthesized images.
Our method produces state-of-the-art results for neural point cloud rendering by a significant margin.
arXiv Detail & Related papers (2022-10-07T16:54:15Z) - Dynamic Feature Regularized Loss for Weakly Supervised Semantic
Segmentation [37.43674181562307]
We propose a new regularized loss which utilizes both shallow and deep features that are dynamically updated.
Our approach achieves new state-of-the-art performances, outperforming other approaches by a significant margin with more than 6% mIoU increase.
arXiv Detail & Related papers (2021-08-03T05:11:00Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
We adapt adversarial training by directly perturbing feature statistics, rather than image pixels, to produce robust models.
Our proposed method, Adversarial Batch Normalization (AdvBN), is a single network layer that generates worst-case feature perturbations during training.
arXiv Detail & Related papers (2020-09-18T17:52:34Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Spatial-Adaptive Network for Single Image Denoising [14.643663950015334]
We propose a novel spatial-adaptive denoising network (SADNet) for efficient single image blind noise removal.
Our method can surpass the state-of-the-art denoising methods both quantitatively and visually.
arXiv Detail & Related papers (2020-01-28T12:24:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.