A physics-driven sensor placement optimization methodology for temperature field reconstruction
- URL: http://arxiv.org/abs/2409.18423v1
- Date: Fri, 27 Sep 2024 03:26:38 GMT
- Title: A physics-driven sensor placement optimization methodology for temperature field reconstruction
- Authors: Xu Liu, Wen Yao, Wei Peng, Zhuojia Fu, Zixue Xiang, Xiaoqian Chen,
- Abstract summary: We propose a novel physics-driven sensor placement optimization (PSPO) method for temperature field reconstruction.
The PSPO method significantly outperforms random and uniform selection methods, improving the reconstruction accuracy by nearly an order of magnitude.
- Score: 9.976807723785006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perceiving the global field from sparse sensors has been a grand challenge in the monitoring, analysis, and design of physical systems. In this context, sensor placement optimization is a crucial issue. Most existing works require large and sufficient data to construct data-based criteria, which are intractable in data-free scenarios without numerical and experimental data. To this end, we propose a novel physics-driven sensor placement optimization (PSPO) method for temperature field reconstruction using a physics-based criterion to optimize sensor locations. In our methodological framework, we firstly derive the theoretical upper and lower bounds of the reconstruction error under noise scenarios by analyzing the optimal solution, proving that error bounds correlate with the condition number determined by sensor locations. Furthermore, the condition number, as the physics-based criterion, is used to optimize sensor locations by the genetic algorithm. Finally, the best sensors are validated by reconstruction models, including non-invasive end-to-end models, non-invasive reduced-order models, and physics-informed models. Experimental results, both on a numerical and an application case, demonstrate that the PSPO method significantly outperforms random and uniform selection methods, improving the reconstruction accuracy by nearly an order of magnitude. Moreover, the PSPO method can achieve comparable reconstruction accuracy to the existing data-driven placement optimization methods.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Constrained optimization of sensor placement for nuclear digital twins [1.7247618645684337]
We develop a data-driven technique that incorporates constraints into an optimization framework for sensor placement.
We demonstrate the efficacy of sensors optimized by exhaustively computing all feasible configurations for a low-dimensional dynamical system.
arXiv Detail & Related papers (2023-06-23T17:47:06Z) - Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces [3.729242965449096]
The sensor placement problem is a common problem that arises when monitoring correlated phenomena.
We present a novel formulation to the SP problem based on variational approximation that can be optimized using gradient descent.
arXiv Detail & Related papers (2023-02-28T19:10:12Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Information Entropy Initialized Concrete Autoencoder for Optimal Sensor
Placement and Reconstruction of Geophysical Fields [58.720142291102135]
We propose a new approach to the optimal placement of sensors for reconstructing geophysical fields from sparse measurements.
We demonstrate our method on the two examples: (a) temperature and (b) salinity fields around the Barents Sea and the Svalbard group of islands.
We find out that the obtained optimal sensor locations have clear physical interpretation and correspond to the boundaries between sea currents.
arXiv Detail & Related papers (2022-06-28T12:43:38Z) - Heat Conduction Plate Layout Optimization using Physics-driven
Convolutional Neural Networks [14.198900757461555]
The layout optimization of the heat conduction is essential during design in engineering, especially for sensible thermal products.
Data-driven approaches are used to train a surrogate model as a mapping between the prescribed external loads and various geometry.
This paper proposes a Physics-driven Convolutional Neural Networks (PD-CNN) method to infer the physical field solutions for varied loading cases.
arXiv Detail & Related papers (2022-01-21T10:43:57Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.