Constrained optimization of sensor placement for nuclear digital twins
- URL: http://arxiv.org/abs/2306.13637v2
- Date: Fri, 16 Feb 2024 23:28:34 GMT
- Title: Constrained optimization of sensor placement for nuclear digital twins
- Authors: Niharika Karnik, Mohammad G. Abdo, Carlos E. Estrada Perez, Jun Soo
Yoo, Joshua J. Cogliati, Richard S. Skifton, Pattrick Calderoni, Steven L.
Brunton, and Krithika Manohar
- Abstract summary: We develop a data-driven technique that incorporates constraints into an optimization framework for sensor placement.
We demonstrate the efficacy of sensors optimized by exhaustively computing all feasible configurations for a low-dimensional dynamical system.
- Score: 1.7247618645684337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of extensive sensor arrays in nuclear reactors is infeasible
due to challenging operating conditions and inherent spatial limitations.
Strategically placing sensors within defined spatial constraints is essential
for the reconstruction of reactor flow fields and the creation of nuclear
digital twins. We develop a data-driven technique that incorporates constraints
into an optimization framework for sensor placement, with the primary objective
of minimizing reconstruction errors under noisy sensor measurements. The
proposed greedy algorithm optimizes sensor locations over high-dimensional
grids, adhering to user-specified constraints. We demonstrate the efficacy of
optimized sensors by exhaustively computing all feasible configurations for a
low-dimensional dynamical system. To validate our methodology, we apply the
algorithm to the Out-of-Pile Testing and Instrumentation Transient Water
Irradiation System (OPTI-TWIST) prototype capsule. This capsule is electrically
heated to emulate the neutronics effect of the nuclear fuel. The TWIST
prototype that will eventually be inserted in the Transient Reactor Test
facility (TREAT) at the Idaho National Laboratory (INL), serves as a practical
demonstration. The resulting sensor-based temperature reconstruction within
OPTI-TWIST demonstrates minimized error, provides probabilistic bounds for
noise-induced uncertainty, and establishes a foundation for communication
between the digital twin and the experimental facility.
Related papers
- A physics-driven sensor placement optimization methodology for temperature field reconstruction [9.976807723785006]
We propose a novel physics-driven sensor placement optimization (PSPO) method for temperature field reconstruction.
The PSPO method significantly outperforms random and uniform selection methods, improving the reconstruction accuracy by nearly an order of magnitude.
arXiv Detail & Related papers (2024-09-27T03:26:38Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
We propose a novel framework for sensor fault detection using masked models and self-supervised learning.
We validate our proposed technique on both a public dataset and a real-world dataset from offshore GE wind turbines.
Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in real-time.
arXiv Detail & Related papers (2024-03-24T13:44:57Z) - TCI-Former: Thermal Conduction-Inspired Transformer for Infrared Small
Target Detection [58.00308680221481]
Infrared small target detection (ISTD) is critical to national security and has been extensively applied in military areas.
Most ISTD networks focus on designing feature extraction blocks or feature fusion modules, but rarely describe the ISTD process from the feature map evolution perspective.
We propose Thermal Conduction-Inspired Transformer (TCI-Former) based on the theoretical principles of thermal conduction.
arXiv Detail & Related papers (2024-02-03T05:51:22Z) - Data-Based Design of Multi-Model Inferential Sensors [0.0]
The nonlinear character of industrial processes is usually the main limitation to designing simple linear inferential sensors.
We propose two novel approaches for the design of multi-model inferential sensors.
The results show substantial improvements over the state-of-the-art design techniques for single-/multi-model inferential sensors.
arXiv Detail & Related papers (2023-08-05T12:55:15Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Detection of Sensor-To-Sensor Variations using Explainable AI [2.2956649873563952]
chemi-resistive gas sensing devices are plagued by issues of sensor variations during manufacturing.
This study proposes a novel approach for detecting sensor-to-sensor variations in sensing devices using the explainable AI (XAI) method of SHapley Additive exPlanations (SHAP)
The methodology is tested using artificial and realistic Ozone concentration profiles to train a Gated Recurrent Unit (GRU) model.
arXiv Detail & Related papers (2023-06-19T11:00:54Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Information Entropy Initialized Concrete Autoencoder for Optimal Sensor
Placement and Reconstruction of Geophysical Fields [58.720142291102135]
We propose a new approach to the optimal placement of sensors for reconstructing geophysical fields from sparse measurements.
We demonstrate our method on the two examples: (a) temperature and (b) salinity fields around the Barents Sea and the Svalbard group of islands.
We find out that the obtained optimal sensor locations have clear physical interpretation and correspond to the boundaries between sea currents.
arXiv Detail & Related papers (2022-06-28T12:43:38Z) - A reconfigurable neural network ASIC for detector front-end data
compression at the HL-LHC [0.40690419770123604]
A neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression.
This is the first radiation tolerant on-detector ASIC implementation of a neural network that has been designed for particle physics applications.
arXiv Detail & Related papers (2021-05-04T18:06:23Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.