Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization
- URL: http://arxiv.org/abs/2409.18433v1
- Date: Fri, 27 Sep 2024 03:49:56 GMT
- Title: Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization
- Authors: Mucong Ding, Chenghao Deng, Jocelyn Choo, Zichu Wu, Aakriti Agrawal, Avi Schwarzschild, Tianyi Zhou, Tom Goldstein, John Langford, Anima Anandkumar, Furong Huang,
- Abstract summary: We present Easy2Hard-Bench, a collection of 6 benchmark datasets spanning various domains.
Each problem within these datasets is annotated with numerical difficulty scores.
We provide a comprehensive analysis of their performance and generalization capabilities across varying levels of difficulty.
- Score: 126.27645170941268
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While generalization over tasks from easy to hard is crucial to profile language models (LLMs), the datasets with fine-grained difficulty annotations for each problem across a broad range of complexity are still blank. Aiming to address this limitation, we present Easy2Hard-Bench, a consistently formatted collection of 6 benchmark datasets spanning various domains, such as mathematics and programming problems, chess puzzles, and reasoning questions. Each problem within these datasets is annotated with numerical difficulty scores. To systematically estimate problem difficulties, we collect abundant performance data on attempts to each problem by humans in the real world or LLMs on the prominent leaderboard. Leveraging the rich performance data, we apply well-established difficulty ranking systems, such as Item Response Theory (IRT) and Glicko-2 models, to uniformly assign numerical difficulty scores to problems. Moreover, datasets in Easy2Hard-Bench distinguish themselves from previous collections by a higher proportion of challenging problems. Through extensive experiments with six state-of-the-art LLMs, we provide a comprehensive analysis of their performance and generalization capabilities across varying levels of difficulty, with the aim of inspiring future research in LLM generalization. The datasets are available at https://huggingface.co/datasets/furonghuang-lab/Easy2Hard-Bench.
Related papers
- Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely [8.507599833330346]
Large language models (LLMs) augmented with external data have demonstrated remarkable capabilities in completing real-world tasks.
Retrieval-Augmented Generation (RAG) and fine-tuning are gaining increasing attention and widespread application.
However, the effective deployment of data-augmented LLMs across various specialized fields presents substantial challenges.
arXiv Detail & Related papers (2024-09-23T11:20:20Z) - MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data [20.31528845718877]
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities.
This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset.
arXiv Detail & Related papers (2024-06-26T13:02:35Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Can Large Language Models Always Solve Easy Problems if They Can Solve Harder Ones? [65.43882564649721]
Large language models (LLMs) have demonstrated impressive capabilities, but still suffer from inconsistency issues.
We develop the ConsisEval benchmark, where each entry comprises a pair of questions with a strict order of difficulty.
We analyze the potential for improvement in consistency by relative consistency score.
arXiv Detail & Related papers (2024-06-18T17:25:47Z) - DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving [15.815363023014248]
We propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase.
DART allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples.
We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH.
arXiv Detail & Related papers (2024-06-18T07:14:02Z) - The Unreasonable Effectiveness of Easy Training Data for Hard Tasks [84.30018805150607]
We present the surprising conclusion that current pretrained language models often generalize relatively well from easy to hard data.
We demonstrate this kind of easy-to-hard generalization using simple finetuning methods like in-context learning, linear heads, and QLoRA.
We conclude that easy-to-hard generalization in LMs is surprisingly strong for the tasks studied.
arXiv Detail & Related papers (2024-01-12T18:36:29Z) - Data Factors for Better Compositional Generalization [60.698130703909804]
We conduct an empirical analysis by training Transformer models on a variety of training sets with different data factors.
We show that increased dataset complexity can lead to better generalization behavior on multiple different generalization challenges.
We explore how training examples of different difficulty levels influence generalization differently.
arXiv Detail & Related papers (2023-11-08T01:27:34Z) - Can Large Language Models Understand Real-World Complex Instructions? [54.86632921036983]
Large language models (LLMs) can understand human instructions, but struggle with complex instructions.
Existing benchmarks are insufficient to assess LLMs' ability to understand complex instructions.
We propose CELLO, a benchmark for evaluating LLMs' ability to follow complex instructions systematically.
arXiv Detail & Related papers (2023-09-17T04:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.