Can Large Language Models Always Solve Easy Problems if They Can Solve Harder Ones?
- URL: http://arxiv.org/abs/2406.12809v1
- Date: Tue, 18 Jun 2024 17:25:47 GMT
- Title: Can Large Language Models Always Solve Easy Problems if They Can Solve Harder Ones?
- Authors: Zhe Yang, Yichang Zhang, Tianyu Liu, Jian Yang, Junyang Lin, Chang Zhou, Zhifang Sui,
- Abstract summary: Large language models (LLMs) have demonstrated impressive capabilities, but still suffer from inconsistency issues.
We develop the ConsisEval benchmark, where each entry comprises a pair of questions with a strict order of difficulty.
We analyze the potential for improvement in consistency by relative consistency score.
- Score: 65.43882564649721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities, but still suffer from inconsistency issues (e.g. LLMs can react differently to disturbances like rephrasing or inconsequential order change). In addition to these inconsistencies, we also observe that LLMs, while capable of solving hard problems, can paradoxically fail at easier ones. To evaluate this hard-to-easy inconsistency, we develop the ConsisEval benchmark, where each entry comprises a pair of questions with a strict order of difficulty. Furthermore, we introduce the concept of consistency score to quantitatively measure this inconsistency and analyze the potential for improvement in consistency by relative consistency score. Based on comprehensive experiments across a variety of existing models, we find: (1) GPT-4 achieves the highest consistency score of 92.2\% but is still inconsistent to specific questions due to distraction by redundant information, misinterpretation of questions, etc.; (2) models with stronger capabilities typically exhibit higher consistency, but exceptions also exist; (3) hard data enhances consistency for both fine-tuning and in-context learning. Our data and code will be publicly available on GitHub.
Related papers
- Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization [126.27645170941268]
We present Easy2Hard-Bench, a collection of 6 benchmark datasets spanning various domains.
Each problem within these datasets is annotated with numerical difficulty scores.
We provide a comprehensive analysis of their performance and generalization capabilities across varying levels of difficulty.
arXiv Detail & Related papers (2024-09-27T03:49:56Z) - CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities [25.857946070979576]
Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems annotated with concepts.
This benchmark is difficult, with the best model only scoring 58.1% in standard settings.
We find that models often arrive at the correct final answer through wrong reasoning steps.
arXiv Detail & Related papers (2024-01-13T03:18:16Z) - The Unreasonable Effectiveness of Easy Training Data for Hard Tasks [84.30018805150607]
We present the surprising conclusion that current pretrained language models often generalize relatively well from easy to hard data.
We demonstrate this kind of easy-to-hard generalization using simple finetuning methods like in-context learning, linear heads, and QLoRA.
We conclude that easy-to-hard generalization in LMs is surprisingly strong for the tasks studied.
arXiv Detail & Related papers (2024-01-12T18:36:29Z) - WorldSense: A Synthetic Benchmark for Grounded Reasoning in Large
Language Models [35.088946378980914]
We run our benchmark on three state-of-the-art chat-LLMs (GPT3.5, GPT4 and Llama2-chat)
We show that these models make errors even with as few as three objects.
Errors persist even with chain-of-thought prompting and in-context learning.
arXiv Detail & Related papers (2023-11-27T15:38:17Z) - Enhancing Large Language Models in Coding Through Multi-Perspective Self-Consistency [127.97467912117652]
Large language models (LLMs) have exhibited remarkable ability in code generation.
However, generating the correct solution in a single attempt still remains a challenge.
We propose the Multi-Perspective Self-Consistency (MPSC) framework incorporating both inter- and intra-consistency.
arXiv Detail & Related papers (2023-09-29T14:23:26Z) - Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs [78.31625291513589]
We argue that self-consistency is an important criteria for valid multi-step reasoning in tasks where the solution is composed of the answers to multiple sub-steps.
We propose two types of self-consistency that are particularly important for multi-step reasoning -- hypothetical consistency and compositional consistency.
We demonstrate that multiple variants of the GPT-3/-4 models exhibit poor consistency rates across both types of consistency on a variety of tasks.
arXiv Detail & Related papers (2023-05-23T17:25:59Z) - Exposing and Addressing Cross-Task Inconsistency in Unified
Vision-Language Models [80.23791222509644]
Inconsistent AI models are considered brittle and untrustworthy by human users.
We find that state-of-the-art vision-language models suffer from a surprisingly high degree of inconsistent behavior across tasks.
We propose a rank correlation-based auxiliary training objective, computed over large automatically created cross-task contrast sets.
arXiv Detail & Related papers (2023-03-28T16:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.