Temporal2Seq: A Unified Framework for Temporal Video Understanding Tasks
- URL: http://arxiv.org/abs/2409.18478v1
- Date: Fri, 27 Sep 2024 06:37:47 GMT
- Title: Temporal2Seq: A Unified Framework for Temporal Video Understanding Tasks
- Authors: Min Yang, Zichen Zhang, Limin Wang,
- Abstract summary: We propose a single unified framework, coined as Temporal2Seq, to formulate the output of temporal video understanding tasks as a sequence of discrete tokens.
With this unified token representation, Temporal2Seq can train a generalist model within a single architecture on different video understanding tasks.
We evaluate our Temporal2Seq generalist model on the corresponding test sets of three tasks, demonstrating that Temporal2Seq can produce reasonable results on various tasks.
- Score: 26.007846170517055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the development of video understanding, there is a proliferation of tasks for clip-level temporal video analysis, including temporal action detection (TAD), temporal action segmentation (TAS), and generic event boundary detection (GEBD). While task-specific video understanding models have exhibited outstanding performance in each task, there remains a dearth of a unified framework capable of simultaneously addressing multiple tasks, which is a promising direction for the next generation of AI. To this end, in this paper, we propose a single unified framework, coined as Temporal2Seq, to formulate the output of these temporal video understanding tasks as a sequence of discrete tokens. With this unified token representation, Temporal2Seq can train a generalist model within a single architecture on different video understanding tasks. In the absence of multi-task learning (MTL) benchmarks, we compile a comprehensive co-training dataset by borrowing the datasets from TAD, TAS, and GEBD tasks. We evaluate our Temporal2Seq generalist model on the corresponding test sets of three tasks, demonstrating that Temporal2Seq can produce reasonable results on various tasks and achieve advantages compared with single-task training on this framework. We also investigate the generalization performance of our generalist model on new datasets from different tasks, which yields superior performance to the specific model.
Related papers
- Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts [75.75548749888029]
We present a vision-language model whose parameters are jointly trained on all tasks and fully shared among multiple heterogeneous tasks.
With a single model, Musketeer achieves results comparable to or better than strong baselines trained on single tasks, almost uniformly across multiple tasks.
arXiv Detail & Related papers (2023-05-11T17:57:49Z) - MINOTAUR: Multi-task Video Grounding From Multimodal Queries [70.08973664126873]
We present a single, unified model for tackling query-based video understanding in long-form videos.
In particular, our model can address all three tasks of the Ego4D Episodic Memory benchmark.
arXiv Detail & Related papers (2023-02-16T04:00:03Z) - TarViS: A Unified Approach for Target-based Video Segmentation [115.5770357189209]
TarViS is a novel, unified network architecture that can be applied to any task that requires segmenting a set of arbitrarily defined 'targets' in video.
Our approach is flexible with respect to how tasks define these targets, since it models the latter as abstract 'queries' which are then used to predict pixel-precise target masks.
To demonstrate its effectiveness, we apply TarViS to four different tasks, namely Video Instance (VIS), Video Panoptic (VPS), Video Object (VOS) and Point Exemplar-guided Tracking (PET)
arXiv Detail & Related papers (2023-01-06T18:59:52Z) - Identifying Auxiliary or Adversarial Tasks Using Necessary Condition
Analysis for Adversarial Multi-task Video Understanding [34.75145779372538]
We propose a generalized notion of multi-task learning by incorporating both auxiliary tasks that the model should perform well on and adversarial tasks that the model should not perform well on.
Our novel proposed framework, Adversarial Multi-Task Neural Networks (AMT), penalizes adversarial tasks, determined by NCA to be scene recognition.
We show that our approach improves accuracy by 3% and encourages the model to attend to action features instead of correlation-biasing scene features.
arXiv Detail & Related papers (2022-08-22T06:26:11Z) - MulT: An End-to-End Multitask Learning Transformer [66.52419626048115]
We propose an end-to-end Multitask Learning Transformer framework, named MulT, to simultaneously learn multiple high-level vision tasks.
Our framework encodes the input image into a shared representation and makes predictions for each vision task using task-specific transformer-based decoder heads.
arXiv Detail & Related papers (2022-05-17T13:03:18Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
The study of multi-task learning has drawn great attention from the community.
Despite the remarkable progress, the challenge of optimally learning different tasks simultaneously remains to be explored.
Previous works attempt to modify the gradients from different tasks. Yet these methods give a subjective assumption of the relationship between tasks, and the modified gradient may be less accurate.
In this paper, we introduce Task Allocation(STA), a mechanism that addresses this issue by a task allocation approach, in which each sample is randomly allocated a subset of tasks.
For further progress, we propose Interleaved Task Allocation(ISTA) to iteratively allocate all
arXiv Detail & Related papers (2022-03-06T11:57:18Z) - Multi-View representation learning in Multi-Task Scene [4.509968166110557]
We propose a novel semi-supervised algorithm, termed as Multi-Task Multi-View learning based on Common and Special Features (MTMVCSF)
An anti-noise multi-task multi-view algorithm called AN-MTMVCSF is proposed, which has a strong adaptability to noise labels.
The effectiveness of these algorithms is proved by a series of well-designed experiments on both real world and synthetic data.
arXiv Detail & Related papers (2022-01-15T11:26:28Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.