Metropolitan quantum key distribution using a GaN-based room-temperature telecommunication single-photon source
- URL: http://arxiv.org/abs/2409.18502v1
- Date: Fri, 27 Sep 2024 07:35:51 GMT
- Title: Metropolitan quantum key distribution using a GaN-based room-temperature telecommunication single-photon source
- Authors: Haoran Zhang, Xingjian Zhang, John Eng, Max Meunier, Yuzhe Yang, Alexander Ling, Jesus Zuniga-Perez, Weibo Gao,
- Abstract summary: Single-photon sources (SPS) hold the potential to enhance the performance of quantum key distribution (QKD)
We have successfully demonstrated QKD using a room-temperature SPS at telecommunication wavelength.
- Score: 54.32714639668751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-photon sources (SPS) hold the potential to enhance the performance of quantum key distribution (QKD). QKD systems using SPS often require cryogenic cooling, while recent QKD attempts using SPS operating at room-temperature have failed to achieve long-distance transmission due to the SPS not operating at telecommunication wavelength. In this work, we have successfully demonstrated QKD using a room-temperature SPS at telecommunication wavelength. The SPS used in this work is based on point defects hosted by gallium nitride (GaN) thin films grown on sapphire substrates. We employed a time-bin and phase encoding scheme to perform the BB84 and reference-frame-independent QKD protocols over a 33 km fiber spool, achieving a secure key rate of $7.58\times 10^{-7}$ per pulse. Moreover, we also implemented a metropolitan QKD experiment over a 30 km deployed fiber, achieving a secure key rate of $6.06\times 10^{-8}$ per pulse. These results broaden the prospects for future use of SPS in commercial QKD applications.
Related papers
- Polarization-encoded quantum key distribution with a room-temperature telecom single-photon emitter [47.54990103162742]
Single photon sources (SPSs) are directly applicable in quantum key distribution (QKD)
We report an observation of polarization-encoded QKD using a room-temperature telecom SPS based on a GaN defect.
arXiv Detail & Related papers (2024-09-25T16:17:36Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Resource-efficient quantum key distribution with integrated silicon
photonics [9.319767987871627]
Integrated photonics provides a promising platform for quantum key distribution (QKD) system in terms of miniaturization, robustness and scalability.
Here, we report a demonstration of resource-efficient chip-based BB84 QKD with a silicon-based encoder and decoder.
arXiv Detail & Related papers (2022-12-26T01:45:13Z) - High-dimensional quantum key distribution using energy-time entanglement
over 242 km partially deployed fiber [8.905152890117282]
Entanglement-based quantum key distribution (QKD) is an essential ingredient in quantum communication.
We report an experimental QKD using energy-time entangled photon pairs that transmit over optical fibers of 242 km.
We generate secure keys with secure key rates of 0.22 bps and 0.06 bps in and finite-size regime.
arXiv Detail & Related papers (2022-12-06T01:37:57Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Time-frequency Quantum Key Distribution over a Free-Space Optical Link [0.4333137905976939]
TF-QKD is implemented with modulations in time and frequency.
We demonstrate free-space optical QKD transmission over a 388-m distance.
arXiv Detail & Related papers (2021-12-08T14:37:15Z) - A Quantum Key Distribution Testbed using a Plug&Play Telecom-wavelength
Single-Photon Source [0.0]
We report on the first quantum key distribution (QKD) testbed using a compact benchtop quantum dot single-photon source operating at telecom wavelengths.
The plug&play device emits single-photon pulses at O-band wavelengths and is based on a deterministically-fabricated quantum dot device integrated into a compact Stirling cryocooler.
Our study represents an important step forward in the development of fiber-based quantum-secured communication networks exploiting sub-Poissonian quantum light sources.
arXiv Detail & Related papers (2021-05-07T19:17:12Z) - Stable Polarization Entanglement based Quantum Key Distribution over
Metropolitan Fibre Network [55.41644538483948]
We demonstrate a quantum key distribution implementation over deployed dark telecom fibers with polarisation-entangled photons generated at the O-band.
One of the photons in the pairs are propagated through 10km of deployed fiber while the others are detected locally.
This ensures continuous and stable QKD operation with an average QBER of 6.4% and a final key rate of 109 bits/s.
arXiv Detail & Related papers (2020-07-04T02:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.