Resource-efficient quantum key distribution with integrated silicon
photonics
- URL: http://arxiv.org/abs/2212.12980v2
- Date: Sun, 11 Jun 2023 02:22:41 GMT
- Title: Resource-efficient quantum key distribution with integrated silicon
photonics
- Authors: Kejin Wei, Xiao Hu, Yongqiang Du, Xin Hua, Zhengeng Zhao, Ye Chen,
Chunfeng Huang, and Xi Xiao
- Abstract summary: Integrated photonics provides a promising platform for quantum key distribution (QKD) system in terms of miniaturization, robustness and scalability.
Here, we report a demonstration of resource-efficient chip-based BB84 QKD with a silicon-based encoder and decoder.
- Score: 9.319767987871627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrated photonics provides a promising platform for quantum key
distribution (QKD) system in terms of miniaturization, robustness and
scalability. Tremendous QKD works based on integrated photonics have been
reported. Nonetheless, most current chip-based QKD implementations require
additional off-chip hardware to demodulate quantum states or perform auxiliary
tasks such as time synchronization and polarization basis tracking. Here, we
report a demonstration of resource-efficient chip-based BB84 QKD with a
silicon-based encoder and decoder. In our scheme, the time synchronization and
polarization compensation are implemented relying on the preparation and
measurement of the quantum states generated by on-chip devices, thus no need
additional hardware. The experimental tests show that our scheme is highly
stable with a low intrinsic QBER of $0.50\pm 0.02\%$ in a 6-h continuous run.
Furthermore, over a commercial fiber channel up to 150 km, the system enables
realizing secure key distribution at a rate of 866 bps. Our demonstration paves
the way for low-cost, wafer-scale manufactured QKD system.
Related papers
- Metropolitan quantum key distribution using a GaN-based room-temperature telecommunication single-photon source [54.32714639668751]
Single-photon sources (SPS) hold the potential to enhance the performance of quantum key distribution (QKD)
We have successfully demonstrated QKD using a room-temperature SPS at telecommunication wavelength.
arXiv Detail & Related papers (2024-09-27T07:35:51Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - High-speed integrated QKD system [0.0]
We present a high-speed (2.5 GHz) integrated QKD setup featuring a transmitter chip in silicon photonics.
Our system achieves raw bit error rates, quantum bit error rates and secret key rates equivalent to a much more complex state-of-the-art setup.
arXiv Detail & Related papers (2022-11-21T15:24:35Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Single-Shot Optical Neural Network [55.41644538483948]
'Weight-stationary' analog optical and electronic hardware has been proposed to reduce the compute resources required by deep neural networks.
We present a scalable, single-shot-per-layer weight-stationary optical processor.
arXiv Detail & Related papers (2022-05-18T17:49:49Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Simple Quantum Key Distribution using a Stable Transmitter-Receiver
Scheme [4.6923016012132175]
Quantum Key Distribution (QKD) is a technology that allows secure key exchange between two distant users.
We have presented the implementation of a simple QKD with the help of a stable transmitter-receiver scheme.
The scheme is also tested over a fiber spool, obtaining a stable and secure finite key rate of 7.32k bits per second.
arXiv Detail & Related papers (2021-04-15T13:22:26Z) - Resource-effective Quantum Key Distribution: a field-trial in Padua city
center [0.0]
Quantum Key Distribution (QKD) allows distant parties to distill a secret key with unconditional security.
We present a field-trial which exploits a low-complexity self-stabilized hardware and a novel synchronization technique.
arXiv Detail & Related papers (2020-12-15T17:54:29Z) - Photonic integrated quantum key distribution receiver for multiple users [3.3113209479268453]
Integrated photonics has the advantages of miniaturization, low cost, and CMOS compatibility, and it provides a stable, highly integrated, and practical platform for quantum key distribution (QKD)
We have designed and fabricated a QKD receiver chip for multiple users.
Our chip is based on a time-division multiplexing technique and makes use of a single set of SPDs to support up to four users' QKD.
arXiv Detail & Related papers (2020-07-07T13:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.