論文の概要: An Epistemic Human-Aware Task Planner which Anticipates Human Beliefs and Decisions
- arxiv url: http://arxiv.org/abs/2409.18545v1
- Date: Fri, 27 Sep 2024 08:27:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 21:55:30.190208
- Title: An Epistemic Human-Aware Task Planner which Anticipates Human Beliefs and Decisions
- Title(参考訳): 人の信念と判断を予測できる認識型ヒューマン・アウェア・タスクプランナー
- Authors: Shashank Shekhar, Anthony Favier, Rachid Alami,
- Abstract要約: 目的は、制御不能な人間の行動を説明するロボットポリシーを構築することである。
提案手法は,AND-OR探索に基づく新しい計画手法と解法の構築である。
2つの領域における予備的な実験は、1つの新しいものと1つの適応されたもので、フレームワークの有効性を実証している。
- 参考スコア(独自算出の注目度): 8.309981857034902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a substantial extension of our Human-Aware Task Planning framework, tailored for scenarios with intermittent shared execution experiences and significant belief divergence between humans and robots, particularly due to the uncontrollable nature of humans. Our objective is to build a robot policy that accounts for uncontrollable human behaviors, thus enabling the anticipation of possible advancements achieved by the robot when the execution is not shared, e.g. when humans are briefly absent from the shared environment to complete a subtask. But, this anticipation is considered from the perspective of humans who have access to an estimated model for the robot. To this end, we propose a novel planning framework and build a solver based on AND-OR search, which integrates knowledge reasoning, including situation assessment by perspective taking. Our approach dynamically models and manages the expansion and contraction of potential advances while precisely keeping track of when (and when not) agents share the task execution experience. The planner systematically assesses the situation and ignores worlds that it has reason to think are impossible for humans. Overall, our new solver can estimate the distinct beliefs of the human and the robot along potential courses of action, enabling the synthesis of plans where the robot selects the right moment for communication, i.e. informing, or replying to an inquiry, or defers ontic actions until the execution experiences can be shared. Preliminary experiments in two domains, one novel and one adapted, demonstrate the effectiveness of the framework.
- Abstract(参考訳): 我々は,人間とロボット間の間欠的な共有実行経験と,特に制御不能な人間の性質のために,人間とロボット間の重要な信念の相違を伴うシナリオに適したヒューマン・アウェア・タスク・プランニング・フレームワークを,大幅に拡張した。
我々の目的は、制御不能な人間の行動を説明するロボットポリシーを構築することであり、実行が共有されていない場合、例えば、人間が共有環境から一時的に欠席してサブタスクを完了した場合、ロボットによって達成される可能性の予測を可能にする。
しかし、この予測は、ロボットの推定モデルにアクセスできる人間の観点からも考えられている。
そこで本研究では,視点による状況評価を含む知識推論を統合した,AND-OR探索に基づく新しい計画枠組みと問題解決手法を提案する。
提案手法は,エージェントがタスク実行経験をいつ(かつそうでなければ)共有するかを正確に把握しながら,潜在的進歩の拡大と縮小を動的にモデル化し,管理する。
プランナーは、その状況を体系的に評価し、人間にとって不可能と考える理由のある世界を無視する。
全体として、我々の新しい解法は、潜在的な行動経路に沿って人間とロボットの異なる信念を推定し、ロボットがコミュニケーションのための適切な瞬間、すなわち、情報提供や質問への応答を選択する計画の合成を可能にし、実行経験が共有されるまでオンティックアクションを宣言する。
2つの領域における予備実験は、新しいものと適応されたものとで、フレームワークの有効性を実証している。
関連論文リスト
- Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Guessing human intentions to avoid dangerous situations in caregiving robots [1.3546242205182986]
本研究では,人間の危険状況を検出するアルゴリズムを提案する。
ATMにシミュレーションベースのアプローチを導入し、「いいね!」ポリシーを採用し、人々に意図や行動を割り当てる。
このアルゴリズムは既存の認知アーキテクチャの一部として実装され、シミュレーションシナリオでテストされている。
論文 参考訳(メタデータ) (2024-03-24T20:43:29Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - Robust Robot Planning for Human-Robot Collaboration [11.609195090422514]
人間とロボットのコラボレーションにおいて、人間の目的はしばしばロボットに未知である。
本研究では,各目的関数に対して不確実な人間行動(ポリシー)を自動的に生成する手法を提案する。
また,上記の不確実性に対して頑健なロボット計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T16:02:48Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Robust Planning for Human-Robot Joint Tasks with Explicit Reasoning on
Human Mental State [2.8246074016493457]
我々は,人間ロボットチームが達成するための既知の目的を持った共有タスクを与えられる,人間に意識したタスク計画問題を考える。
近年のアプローチでは、ロボットが両方のエージェント(共有された)タスクを計画する独立した合理的エージェントのチームとしてそれをモデル化している。
本稿では,実行時の可観測性規約をモデル化し,使用するための新しいアプローチについて述べる。
論文 参考訳(メタデータ) (2022-10-17T09:21:00Z) - Generating Active Explicable Plans in Human-Robot Teaming [4.657875410615595]
ロボットは人間の期待に応えて明示的に振る舞うことが重要である。
説明可能な計画を生成するための既存のアプローチは、しばしば人間の期待が知られ、静的であると仮定する。
ベイズ的アプローチを用いて、人間の動的な信念と期待をモデル化し、予測し、説明可能な計画をさらに予測する。
論文 参考訳(メタデータ) (2021-09-18T05:05:50Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z) - Supportive Actions for Manipulation in Human-Robot Coworker Teams [15.978389978586414]
我々は、将来の干渉を減らすことで相互作用を支援する行動を、支援ロボット行動と表現する。
1)タスク指向: ロボットは自身のタスク目標をさらに進めるためにのみ行動を取るし、(2)支援的: ロボットはタスク指向のタスクよりも支援的行動を好む。
シミュレーション実験では, 人体モデルを用いて, エージェント間の干渉を軽減し, 作業の完了に要する時間が長いことを明らかにした。
論文 参考訳(メタデータ) (2020-05-02T09:37:10Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。