論文の概要: Hit the Sweet Spot! Span-Level Ensemble for Large Language Models
- arxiv url: http://arxiv.org/abs/2409.18583v1
- Date: Fri, 27 Sep 2024 09:41:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 21:55:30.136588
- Title: Hit the Sweet Spot! Span-Level Ensemble for Large Language Models
- Title(参考訳): スイートスポットを打つ! Span-Level Ensemble for Large Language Models
- Authors: Yangyifan Xu, Jianghao Chen, Junhong Wu, Jiajun Zhang,
- Abstract要約: 本研究では,リアルタイム調整の必要性と正確なアンサンブル決定に必要な情報とを効果的にバランスさせるスパンレベルアンサンブル手法であるSweetSpanを提案する。
まず、各候補モデルを独立して共有プレフィックスに基づいて候補スパンを生成する。
第二に、難易度スコアを計算して、候補モデル間の相互評価を容易にし、不誠実なスコアを抽出してロバストなスパン選択を実現する。
- 参考スコア(独自算出の注目度): 8.34562564266839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensembling various LLMs to unlock their complementary potential and leverage their individual strengths is highly valuable. Previous studies typically focus on two main paradigms: sample-level and token-level ensembles. Sample-level ensemble methods either select or blend fully generated outputs, which hinders dynamic correction and enhancement of outputs during the generation process. On the other hand, token-level ensemble methods enable real-time correction through fine-grained ensemble at each generation step. However, the information carried by an individual token is quite limited, leading to suboptimal decisions at each step. To address these issues, we propose SweetSpan, a span-level ensemble method that effectively balances the need for real-time adjustments and the information required for accurate ensemble decisions. Our approach involves two key steps: First, we have each candidate model independently generate candidate spans based on the shared prefix. Second, we calculate perplexity scores to facilitate mutual evaluation among the candidate models and achieve robust span selection by filtering out unfaithful scores. To comprehensively evaluate ensemble methods, we propose a new challenging setting (ensemble models with significant performance gaps) in addition to the standard setting (ensemble the best-performing models) to assess the performance of model ensembles in more realistic scenarios. Experimental results in both standard and challenging settings across various language generation tasks demonstrate the effectiveness, robustness, and versatility of our approach compared with previous ensemble methods.
- Abstract(参考訳): 様々なLSMを組み立てて、補完的なポテンシャルを解き放ち、個々の強みを活用することは非常に貴重である。
これまでの研究では、サンプルレベルとトークンレベルのアンサンブルという、2つの主要なパラダイムに重点を置いていた。
サンプルレベルのアンサンブル法は、完全に生成された出力を選択またはブレンドし、生成プロセス中に出力の動的修正と強化を妨げる。
一方、トークンレベルのアンサンブル法は、各生成ステップにおける微細なアンサンブルによるリアルタイムな補正を可能にする。
しかし、個々のトークンによって運ばれる情報は極めて限られており、各ステップで最適以下の決定が下される。
これらの問題に対処するために,リアルタイム調整の必要性と正確なアンサンブル決定に必要な情報とを効果的にバランスさせるスパンレベルアンサンブル手法であるSweetSpanを提案する。
まず、各候補モデルを独立して共有プレフィックスに基づいて候補スパンを生成する。
第二に、難易度スコアを計算して、候補モデル間の相互評価を容易にし、不誠実なスコアを抽出してロバストなスパン選択を実現する。
そこで本研究では,より現実的なシナリオにおけるモデルアンサンブルの性能を評価するため,アンサンブル手法を包括的に評価するために,標準設定(ベストパフォーマンスモデル)に加えて,新たな難易度設定(顕著な性能ギャップを持つアンサンブルモデル)を提案する。
各種言語生成タスクにおける標準設定と難易度設定の両方の実験結果から,従来のアンサンブル手法と比較して,アプローチの有効性,堅牢性,汎用性を示した。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggetsはワンショット学習を使用して、広範なデータセットから高品質な命令データを選択する。
我々は,textscNuggets がキュレートした例の上位1%による命令チューニングが,データセット全体を用いた従来の手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-12-16T03:33:12Z) - Universal Semi-supervised Model Adaptation via Collaborative Consistency
Training [92.52892510093037]
我々は、Universal Semi-supervised Model Adaptation (USMA)と呼ばれる現実的で挑戦的なドメイン適応問題を導入する。
本稿では,2つのモデル間の予測整合性を規則化する協調的整合性トレーニングフレームワークを提案する。
実験により,いくつかのベンチマークデータセットにおける本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-07-07T08:19:40Z) - Probabilistic Bilevel Coreset Selection [24.874967723659022]
本稿では,各トレーニングサンプルの確率的重みを学習することにより,コアセット選択の連続確率的2レベル定式化を提案する。
暗黙的な微分の問題を伴わずに、偏りのない政策勾配を経由し、二段階最適化問題に対する効率的な解法を開発する。
論文 参考訳(メタデータ) (2023-01-24T09:37:00Z) - Differentiable Model Selection for Ensemble Learning [37.99501959301896]
本稿では、機械学習と最適化を統合した微分可能なモデル選択のための新しいフレームワークを提案する。
このフレームワークは、個々の事前学習されたモデルの出力を組み合わせて、特定の入力サンプルに対して適切なアンサンブルメンバーを選択する戦略であるアンサンブル学習用に調整されている。
論文 参考訳(メタデータ) (2022-11-01T03:37:49Z) - Model ensemble instead of prompt fusion: a sample-specific knowledge
transfer method for few-shot prompt tuning [85.55727213502402]
我々は、ソースタスクのソフトプロンプトから知識を伝達することで、プロンプトチューニングにおける数ショットのパフォーマンスを改善することに集中する。
我々はソースモデル(SESoM)のサンプル固有アンサンブルを提案する。
SESoMは、ソースモデルが出力されるときに、ターゲットの各サンプルに対するソースモデルのコントリビューションを個別に調整することを学ぶ。
論文 参考訳(メタデータ) (2022-10-23T01:33:16Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
トレーニングデータのサブセットのみをラベル付けするバッチアクティブな学習問題を考察する。
制約付き最適化を用いて学習問題を定式化し、各制約はラベル付きサンプルにモデルの性能を拘束する。
数値実験により,提案手法は最先端の能動学習法と同等かそれ以上に機能することを示した。
論文 参考訳(メタデータ) (2022-02-08T19:18:49Z) - A New Approach to Overgenerating and Scoring Abstractive Summaries [9.060597430218378]
ステージ1ではソーステキストから多様な候補要約を生成し,ステージ2では許容候補をスコア付けして選択する2段階戦略を提案する。
私達の発電機はスペースが限られているとき特に適している要約の長さの精密な制御を与えます。
我々のセレクタは、最適な要約長を予測し、元のテキストに忠実さを特に強調するように設計されている。
論文 参考訳(メタデータ) (2021-04-05T00:29:45Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。