論文の概要: "Oh LLM, I'm Asking Thee, Please Give Me a Decision Tree": Zero-Shot Decision Tree Induction and Embedding with Large Language Models
- arxiv url: http://arxiv.org/abs/2409.18594v1
- Date: Fri, 27 Sep 2024 09:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 19:54:56.590033
- Title: "Oh LLM, I'm Asking Thee, Please Give Me a Decision Tree": Zero-Shot Decision Tree Induction and Embedding with Large Language Models
- Title(参考訳): 『Oh LLM, I'mking Thee, please Give me a Decision Tree: Zero-Shot Decision Tree Injection and Embeddding with Large Language Models』
- Authors: Ricardo Knauer, Mario Koddenbrock, Raphael Wallsberger, Nicholas M. Brisson, Georg N. Duda, Deborah Falla, David W. Evans, Erik Rodner,
- Abstract要約: 大規模言語モデル(LLM)は、データ制限時に予測モデリングに事前知識を活用する強力な手段を提供する。
本研究では,LLMが圧縮された世界知識を用いて,本質的に解釈可能な機械学習モデルを生成する方法を示す。
- 参考スコア(独自算出の注目度): 1.742301293487176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) provide powerful means to leverage prior knowledge for predictive modeling when data is limited. In this work, we demonstrate how LLMs can use their compressed world knowledge to generate intrinsically interpretable machine learning models, i.e., decision trees, without any training data. We find that these zero-shot decision trees can surpass data-driven trees on some small-sized tabular datasets and that embeddings derived from these trees perform on par with data-driven tree-based embeddings on average. Our knowledge-driven decision tree induction and embedding approaches therefore serve as strong new baselines for data-driven machine learning methods in the low-data regime.
- Abstract(参考訳): 大規模言語モデル(LLM)は、データ制限時に予測モデリングに事前知識を活用する強力な手段を提供する。
本研究では、LLMが圧縮された世界知識を用いて、本質的に解釈可能な機械学習モデル、すなわち決定木を学習データなしで生成する方法を実証する。
これらのゼロショット決定木は、いくつかの小さなテーブル状データセット上のデータ駆動木を超えることができ、これらの木から派生した埋め込みは、平均してデータ駆動木ベースの埋め込みと同等に機能する。
したがって、私たちの知識駆動決定木誘導と埋め込みアプローチは、低データ体制におけるデータ駆動機械学習手法の強力なベースラインとして役立ちます。
関連論文リスト
- Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
本稿では,大規模言語モデル(LLM)を用いて,効率的な特徴生成ルールを同定するフレームワークを提案する。
我々は、自然言語で容易に表現できるため、この推論情報を伝達するために決定木を使用します。
OCTreeは様々なベンチマークで様々な予測モデルの性能を継続的に向上させる。
論文 参考訳(メタデータ) (2024-06-12T08:31:34Z) - Learning accurate and interpretable decision trees [27.203303726977616]
我々は、同じドメインから繰り返しデータにアクセスして決定木学習アルゴリズムを設計するためのアプローチを開発する。
本研究では,ベイズ決定木学習における事前パラメータのチューニングの複雑さについて検討し,その結果を決定木回帰に拡張する。
また、学習した決定木の解釈可能性について検討し、決定木を用いた説明可能性と精度のトレードオフを最適化するためのデータ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-24T20:10:10Z) - An Interpretable Client Decision Tree Aggregation process for Federated Learning [7.8973037023478785]
本稿では,フェデレート学習シナリオを対象とした解釈可能なクライアント決定木集約プロセスを提案する。
このモデルは、決定ツリーの複数の決定パスの集約に基づいており、ID3やCARTなど、さまざまな決定ツリータイプで使用することができる。
4つのデータセットで実験を行い、分析により、モデルで構築された木が局所モデルを改善し、最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-04-03T06:53:56Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - NCART: Neural Classification and Regression Tree for Tabular Data [0.5439020425819]
NCARTはResidual Networksの修正版で、完全に接続されたレイヤを複数の識別不能な決定木で置き換える。
ニューラルネットワークのエンドツーエンド能力の恩恵を受けながら、解釈可能性を維持している。
NCARTアーキテクチャの単純さは、さまざまなサイズのデータセットに適している。
論文 参考訳(メタデータ) (2023-07-23T01:27:26Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
本稿では,このマルチモーダル予測課題に対処するため,SIT(Social Interpretable Tree)と呼ばれる木に基づく手法を提案する。
木の根から葉までの経路は、個々の将来の軌跡を表す。
ETH-UCYとStanford Droneのデータセットによる実験結果からは,手作り木にもかかわらず,我々の手法が最先端の手法の性能に適合または超えることを示した。
論文 参考訳(メタデータ) (2022-05-26T12:18:44Z) - Dive into Decision Trees and Forests: A Theoretical Demonstration [0.0]
決定木は"divide-and-conquer"の戦略を使用して、入力機能とラベル間の依存性に関する複雑な問題を小さなものに分割します。
近年, 計算広告, 推薦システム, 情報検索などの性能が大幅に向上している。
論文 参考訳(メタデータ) (2021-01-20T16:47:59Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。