Search and Detect: Training-Free Long Tail Object Detection via Web-Image Retrieval
- URL: http://arxiv.org/abs/2409.18733v1
- Date: Thu, 26 Sep 2024 05:14:19 GMT
- Title: Search and Detect: Training-Free Long Tail Object Detection via Web-Image Retrieval
- Authors: Mankeerat Sidhu, Hetarth Chopra, Ansel Blume, Jeonghwan Kim, Revanth Gangi Reddy, Heng Ji,
- Abstract summary: We introduce SearchDet, a training-free long-tail object detection framework.
Our proposed method is simple and training-free, yet achieves over 48.7% mAP improvement on ODinW and 59.1% mAP improvement on LVIS.
- Score: 46.944526377710346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce SearchDet, a training-free long-tail object detection framework that significantly enhances open-vocabulary object detection performance. SearchDet retrieves a set of positive and negative images of an object to ground, embeds these images, and computes an input image-weighted query which is used to detect the desired concept in the image. Our proposed method is simple and training-free, yet achieves over 48.7% mAP improvement on ODinW and 59.1% mAP improvement on LVIS compared to state-of-the-art models such as GroundingDINO. We further show that our approach of basing object detection on a set of Web-retrieved exemplars is stable with respect to variations in the exemplars, suggesting a path towards eliminating costly data annotation and training procedures.
Related papers
- Few-shot target-driven instance detection based on open-vocabulary object detection models [1.0749601922718608]
Open-vocabulary object detection models bring closer visual and textual concepts in the same latent space.
We propose a lightweight method to turn the latter into a one-shot or few-shot object recognition models without requiring textual descriptions.
arXiv Detail & Related papers (2024-10-21T14:03:15Z) - Overcoming Scene Context Constraints for Object Detection in wild using Defilters [3.038642416291856]
High-level computer vision tasks such as object detection, recognition, and segmentation are particularly sensitive to image distortion.
We propose an image defilter to rectify image distortion prior to object detection.
This method enhances object detection accuracy, as models perform optimally when trained on non-distorted images.
arXiv Detail & Related papers (2024-04-12T07:30:52Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
arXiv Detail & Related papers (2024-03-20T08:15:18Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Read, look and detect: Bounding box annotation from image-caption pairs [2.0305676256390934]
We propose a method to locate and label objects in an image by using a form of weaker supervision: image-caption pairs.
Our experiments demonstrate the effectiveness of our approach by achieving a 47.51% recall@1 score in phrase grounding on Flickr30k COCO.
arXiv Detail & Related papers (2023-06-09T12:23:20Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
We propose a new self-supervised pretext task, called instance localization.
We show that integration of bounding boxes into pretraining promotes better task alignment and architecture alignment for transfer learning.
Experimental results demonstrate that our approach yields state-of-the-art transfer learning results for object detection.
arXiv Detail & Related papers (2021-02-16T17:58:57Z) - Improving Object Detection with Selective Self-supervised Self-training [62.792445237541145]
We study how to leverage Web images to augment human-curated object detection datasets.
We retrieve Web images by image-to-image search, which incurs less domain shift from the curated data than other search methods.
We propose a novel learning method motivated by two parallel lines of work that explore unlabeled data for image classification.
arXiv Detail & Related papers (2020-07-17T18:05:01Z) - Few-shot Object Detection on Remote Sensing Images [11.40135025181393]
We introduce a few-shot learning-based method for object detection on remote sensing images.
We build our few-shot object detection model upon YOLOv3 architecture and develop a multi-scale object detection framework.
arXiv Detail & Related papers (2020-06-14T07:18:10Z) - Exploring Bottom-up and Top-down Cues with Attentive Learning for Webly
Supervised Object Detection [76.9756607002489]
We propose a novel webly supervised object detection (WebSOD) method for novel classes.
Our proposed method combines bottom-up and top-down cues for novel class detection.
We demonstrate our proposed method on PASCAL VOC dataset with three different novel/base splits.
arXiv Detail & Related papers (2020-03-22T03:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.