Can AI Enhance its Creativity to Beat Humans ?
- URL: http://arxiv.org/abs/2409.18776v1
- Date: Fri, 27 Sep 2024 14:19:07 GMT
- Title: Can AI Enhance its Creativity to Beat Humans ?
- Authors: Anne-Gaëlle Maltese, Pierre Pelletier, Rémy Guichardaz,
- Abstract summary: This study investigates the creative performance of artificial intelligence (AI) compared to humans.
Human external evaluators have scored creative outputs generated by humans and AI.
Results suggest that integrating human feedback is crucial for maximizing AI's creative potential.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Creativity is a fundamental pillar of human expression and a driving force behind innovation, yet it now stands at a crossroads. As artificial intelligence advances at an astonishing pace, the question arises: can machines match and potentially surpass human creativity? This study investigates the creative performance of artificial intelligence (AI) compared to humans by analyzing the effects of two distinct prompting strategies (a Naive and an Expert AI) on AI and across three different tasks (Text, Draw and Alternative Uses tasks). Human external evaluators have scored creative outputs generated by humans and AI, and these subjective creative scores were complemented with objective measures based on quantitative measurements and NLP tools. The results reveal that AI generally outperforms humans in creative tasks, though this advantage is nuanced by the specific nature of each task and the chosen creativity criteria. Ultimately, while AI demonstrates superior performance in certain creative domains, our results suggest that integrating human feedback is crucial for maximizing AI's creative potential.
Related papers
- On the stochastics of human and artificial creativity [0.0]
We argue that achieving human-level intelligence in computers requires also human-level creativity.
We develop a statistical representation of human creativity, incorporating prior insights from theory, psychology, philosophy, neuroscience, and chaos theory.
Our analysis includes modern AI algorithms such as reinforcement learning, diffusion models, and large language models, addressing to what extent they measure up to human level creativity.
arXiv Detail & Related papers (2024-03-03T10:38:57Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - AI and the creative realm: A short review of current and future
applications [2.1320960069210484]
This study explores the concept of creativity and artificial intelligence (AI)
The development of more sophisticated AI models and the proliferation of human-computer interaction tools have opened up new possibilities for AI in artistic creation.
arXiv Detail & Related papers (2023-06-01T12:28:08Z) - Artificial muses: Generative Artificial Intelligence Chatbots Have Risen
to Human-Level Creativity [1.332560004325655]
We compare human-generated ideas with those generated by six Generative Artificial Intelligence (GAI)
We found no qualitative difference between AI and human-generated creativity, although there are differences in how ideas are generated.
Our findings suggest that GAIs are valuable assistants in the creative process.
arXiv Detail & Related papers (2023-03-21T16:35:01Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
Our algorithm lets the human expert take the lead in the experimental process.
We show that our algorithm converges sub-linearly, at a rate faster than the AI or human alone.
arXiv Detail & Related papers (2023-03-03T02:56:05Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Creativity in the era of artificial intelligence [1.8275108630751844]
We aim to provide a new perspective on the question of creativity at the era of AI, by blurring the frontier between social and computational sciences.
We argue that the objective of trying to purely mimic human creative traits towards a self-contained ex-nihilo generative machine would be highly counterproductive.
arXiv Detail & Related papers (2020-08-13T15:07:34Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.