論文の概要: Simulating Dynamic Tumor Contrast Enhancement in Breast MRI using Conditional Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2409.18872v1
- Date: Fri, 27 Sep 2024 16:08:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 08:01:28.139585
- Title: Simulating Dynamic Tumor Contrast Enhancement in Breast MRI using Conditional Generative Adversarial Networks
- Title(参考訳): コンディショナル・ジェネレーション・バイバーサル・ネットワークを用いた乳房MRIのダイナミックな腫瘍造影効果のシミュレーション
- Authors: Richard Osuala, Smriti Joshi, Apostolia Tsirikoglou, Lidia Garrucho, Walter H. L. Pinaya, Daniel M. Lang, Julia A. Schnabel, Oliver Diaz, Karim Lekadir,
- Abstract要約: 乳房MRIにおける仮想コントラスト強調法を提案し,従来のコントラストエージェントを用いたDCE-MRIの取得に代えて,有望な非侵襲的代替手段を提供する。
条件付き生成逆数ネットワークを用いて、複数の対応するDCE-MRIタイムポイントの合同生成シーケンスを含むDCE-MRI画像を予測する。
提案手法は,現実的で有用なDCE-MRIシークエンスを生成する上で有望な結果を示し,乳がんの診断と治療を改善するための仮想コントラスト増強の可能性を強調した。
- 参考スコア(独自算出の注目度): 2.4634168876565177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a method for virtual contrast enhancement in breast MRI, offering a promising non-invasive alternative to traditional contrast agent-based DCE-MRI acquisition. Using a conditional generative adversarial network, we predict DCE-MRI images, including jointly-generated sequences of multiple corresponding DCE-MRI timepoints, from non-contrast-enhanced MRIs, enabling tumor localization and characterization without the associated health risks. Furthermore, we qualitatively and quantitatively evaluate the synthetic DCE-MRI images, proposing a multi-metric Scaled Aggregate Measure (SAMe), assessing their utility in a tumor segmentation downstream task, and conclude with an analysis of the temporal patterns in multi-sequence DCE-MRI generation. Our approach demonstrates promising results in generating realistic and useful DCE-MRI sequences, highlighting the potential of virtual contrast enhancement for improving breast cancer diagnosis and treatment, particularly for patients where contrast agent administration is contraindicated.
- Abstract(参考訳): 本稿では,乳房MRIにおける仮想コントラスト強調法を提案する。
非コントラスト強調MRIから複数のDCE-MRIタイムポイントの同時生成配列を含むDCE-MRI画像を予測することにより,腫瘍の局所化と,関連する健康リスクを伴わないキャラクタリゼーションを実現する。
さらに,Multi-metricd Aggregate Measure (SAMe) を用いて合成DCE-MRI画像の質的,定量的に評価し,腫瘍セグメント化下流タスクにおける有用性を評価し,マルチシーケンスDCE-MRI生成における時間パターンの解析を行った。
提案手法は, 乳がんの診断と治療, 特に造影剤の投与を禁ずる患者に対して, 仮想コントラスト増強の可能性を強調し, 現実的で有用なDCE-MRIシークエンスを生成する上で有望な結果を示すものである。
関連論文リスト
- Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
本研究では,ダイナミックコントラスト強調画像(DCE)とADCマップを用いた乳癌患者のpCR予測モデルを提案する。
本手法は, 腫瘍関連領域からの特徴抽出を誘導するために放射線を利用した自己注意機構を備えたエンコーダを用いて, DCE MRI と ADC から特徴抽出を行う。
論文 参考訳(メタデータ) (2024-06-05T04:49:55Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Towards Learning Contrast Kinetics with Multi-Condition Latent Diffusion Models [2.8981737432963506]
DCE-MRI時間系列の時間条件画像合成が可能な潜時拡散モデルを提案する。
以上の結果から,本手法が現実的な多列性脂肪飽和乳房DCE-MRIを生成できることが示唆された。
論文 参考訳(メタデータ) (2024-03-20T18:01:57Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Pre- to Post-Contrast Breast MRI Synthesis for Enhanced Tumour Segmentation [0.9722528000969453]
本研究は, GAN(Generative Adversarial Network)を用いて, コントラスト前T1強調脂肪飽和乳房MRIを対応する第1DCE-MRIシーケンスに翻訳することにより, 合成コントラスト増強の実現可能性について検討した。
定量的な画像品質指標を用いて生成したDCE-MRIデータを評価し、3D乳房切片の下流タスクに適用する。
以上の結果から, 造影後DCE-MRI合成が乳房のセグメンテーションモデルの堅牢性向上に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-17T21:48:41Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
合成MRI画像を用いたCTスキャンによるモノモーダル登録の高速化手法を提案する。
提案手法は有望な結果を示し,いくつかの最先端手法より優れていた。
論文 参考訳(メタデータ) (2023-10-31T16:39:56Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Synthesis of Contrast-Enhanced Breast MRI Using Multi-b-Value DWI-based
Hierarchical Fusion Network with Attention Mechanism [15.453470023481932]
造影MRI(CE-MRI)は腫瘍と浸潤した健全な組織との鑑別に優れる。
CE-MRIを得るためにガドリニウムベースの造影剤(GBCA)を使用することは、ネフローゼ性全身線維症と関連し、脳内での生体蓄積を引き起こす可能性がある。
造影剤の使用を減らすため,拡散強調画像(DWI)が重要画像技術として出現している。
論文 参考訳(メタデータ) (2023-07-03T09:46:12Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。