論文の概要: IDGen: Item Discrimination Induced Prompt Generation for LLM Evaluation
- arxiv url: http://arxiv.org/abs/2409.18892v1
- Date: Fri, 27 Sep 2024 16:29:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 08:01:28.117960
- Title: IDGen: Item Discrimination Induced Prompt Generation for LLM Evaluation
- Title(参考訳): IDGen: LLM評価のためのアイテム識別誘起プロンプト生成
- Authors: Fan Lin, Shuyi Xie, Yong Dai, Wenlin Yao, Tianjiao Lang, Zishan Xu, Zhichao Hu, Xiao Xiao, Yuhong Liu, Yu Zhang,
- Abstract要約: 大規模言語モデル(LLMs)を評価するためのID誘発即時合成フレームワークを提案する。
我々のデータ合成フレームワークは、幅と特異性の両方を優先し、LLMの能力を包括的に評価するプロンプトを生成することができる。
我々は、LSMの評価研究を容易にするために、3000以上の慎重に作成されたプロンプトのデータセットをリリースする。
- 参考スコア(独自算出の注目度): 15.895295957106772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) grow increasingly adept at managing complex tasks, the evaluation set must keep pace with these advancements to ensure it remains sufficiently discriminative. Item Discrimination (ID) theory, which is widely used in educational assessment, measures the ability of individual test items to differentiate between high and low performers. Inspired by this theory, we propose an ID-induced prompt synthesis framework for evaluating LLMs to ensure the evaluation set can continually update and refine according to model abilities. Our data synthesis framework prioritizes both breadth and specificity. It can generate prompts that comprehensively evaluate the capabilities of LLMs while revealing meaningful performance differences between models, allowing for effective discrimination of their relative strengths and weaknesses across various tasks and domains. To produce high-quality data, we incorporate a self-correct mechanism into our generalization framework, and develop two models to predict prompt discrimination and difficulty score to facilitate our data synthesis framework, contributing valuable tools to evaluation data synthesis research. We apply our generated data to evaluate five SOTA models. Our data achieves an average score of 51.92, accompanied by a variance of 10.06. By contrast, previous works (i.e., SELF-INSTRUCT and WizardLM) obtain an average score exceeding 67, with a variance below 3.2. The results demonstrate that the data generated by our framework is more challenging and discriminative compared to previous works. We will release a dataset of over 3,000 carefully crafted prompts to facilitate evaluation research of LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)は、複雑なタスクの管理にますます適しているため、評価セットは十分な差別性を維持するために、これらの進歩に追随しなければなりません。
教育評価において広く用いられている項目識別(ID)理論は、個々の試験項目がハイパフォーマーとローパフォーマーを区別する能力を測定する。
この理論に触発されて、モデル能力に応じて評価セットが継続的に更新され、洗練されることを保証するために、LCMを評価するためのID誘起プロンプト合成フレームワークを提案する。
我々のデータ合成フレームワークは、幅と特異性の両方を優先します。
LLMの能力を総合的に評価するプロンプトを生成すると同時に、モデル間で有意義なパフォーマンスの違いを明らかにし、様々なタスクやドメイン間でそれらの相対的な強度と弱点を効果的に識別することができる。
高品質なデータを生成するために,一般化フレームワークに自己補正機構を組み込んで,迅速な識別と難易度予測のための2つのモデルを開発し,データ合成フレームワークを容易にし,データ合成研究評価に有用なツールを提供する。
生成したデータを用いて5つのSOTAモデルを評価する。
我々のデータの平均スコアは51.92で、変動は10.06である。
対照的に、以前の作品(すなわち、SELF-INSTRUCTとWizardLM)は平均スコアが67を超え、3.2以下である。
その結果、我々のフレームワークが生成したデータは、以前の研究と比べて、より困難で差別的であることが示された。
我々は、LSMの評価研究を容易にするために、3000以上の慎重に作成されたプロンプトのデータセットをリリースする。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
新たなアプリケーションは、Large Language Models(LLMs)を使用して、検索強化世代(RAG)機能を強化している。
FRAMESは,LLMが現実的な応答を提供する能力をテストするために設計された高品質な評価データセットである。
本稿では,最先端のLLMでもこの課題に対処し,0.40の精度で検索を行なわないことを示す。
論文 参考訳(メタデータ) (2024-09-19T17:52:07Z) - Efficacy of Synthetic Data as a Benchmark [3.2968976262860408]
大規模言語モデル(LLM)による合成データ生成の有効性について検討する。
実験の結果, 単純なタスクに対して, 合成データは様々な手法の性能を効果的に捉えることができるが, 名前付きエンティティ認識のような複雑なタスクでは不十分であることがわかった。
我々は、ベンチマークデータの生成とタスクの実行の両方に同じLLMを使用した場合のバイアスを評価するバイアス係数と呼ばれる新しい指標を提案する。
論文 参考訳(メタデータ) (2024-09-18T13:20:23Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
本稿では,大規模言語モデル(LLM)を動的に評価するベンチマーク自己進化フレームワークを提案する。
マルチエージェントシステムを用いて、元のインスタンスのコンテキストや質問を操作し、信頼性の高い新しいインスタンスをフレーミングする。
我々のフレームワークは、異なるモデル間の性能の相違を拡大し、様々なタスクで同じモデル内で性能の相違を拡大します。
論文 参考訳(メタデータ) (2024-02-18T03:40:06Z) - Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis,
and LLMs Evaluations [111.88727295707454]
本稿では,NLP分野におけるアウト・オブ・ディストリビューション(OOD)のロバスト性に関する研究を再検討する。
本稿では, 明確な分化と分散の困難さを保証するための, ベンチマーク構築プロトコルを提案する。
我々は,OODロバスト性の分析と評価のための事前学習言語モデルの実験を行った。
論文 参考訳(メタデータ) (2023-06-07T17:47:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。