論文の概要: Self-Replicating Mechanical Universal Turing Machine
- arxiv url: http://arxiv.org/abs/2409.19037v1
- Date: Fri, 27 Sep 2024 08:28:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:40:55.525934
- Title: Self-Replicating Mechanical Universal Turing Machine
- Title(参考訳): 自己複製型メカニカルユニバーサルチューリングマシン
- Authors: Ralph P. Lano,
- Abstract要約: 本稿では、バイオインスパイアされたメカニズムを用いた自己複製有限状態機械(FSM)と自己複製チューリングマシン(TM)の実装について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the implementation of a self-replicating finite-state machine (FSM) and a self-replicating Turing Machine (TM) using bio-inspired mechanisms. Building on previous work that introduced self-replicating structures capable of sorting, copying, and reading information, this study demonstrates the computational power of these mechanisms by explicitly constructing a functioning FSM and TM. This study demonstrates the universality of the system by emulating the UTM(5,5) of Neary and Woods.
- Abstract(参考訳): 本稿では、バイオインスパイアされたメカニズムを用いた自己複製有限状態機械(FSM)と自己複製チューリングマシン(TM)の実装について述べる。
本研究は, FSM と TM を明示的に構成することにより, 情報のソート, 複写, 読み出しが可能な自己複製構造を導入した以前の研究に基づいて, これらのメカニズムの計算能力を示す。
本研究では,近縁林のUTM(5,5)をエミュレートすることで,システムの普遍性を実証する。
関連論文リスト
- Finite State Machine with Input and Process Render [0.22940141855172028]
本稿では,FSMシミュレーションのビデオを生成するFSM(Finite State Machines)の自動可視化ツールを開発した。
教育者はFSMと入力文字列の任意の形式的定義を入力でき、FSMIPRはそのシミュレーションのビデオを生成する。
論文 参考訳(メタデータ) (2024-09-25T16:14:15Z) - Mechanical Self-replication [0.0]
本研究では,生体細胞内の生物学的過程にインスパイアされた自己複製機械系の理論的モデルを提案する。
モデルは自己複製をコアコンポーネントに分解し、それぞれが基本ブロック型のセットから構築された単一のマシンによって実行される。
論文 参考訳(メタデータ) (2024-07-18T09:49:50Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - A Multimodal Automated Interpretability Agent [63.8551718480664]
MAIAは、ニューラルモデルを使用して、ニューラルモデル理解タスクを自動化するシステムである。
まず、画像の学習表現における(ニューロンレベルの)特徴を記述できるMAIAの能力を特徴付ける。
次に、MAIAは、刺激的な特徴に対する感度の低下と、誤分類される可能性のある入力を自動的に識別する2つの追加の解釈可能性タスクに役立てることができることを示す。
論文 参考訳(メタデータ) (2024-04-22T17:55:11Z) - Competition of Mechanisms: Tracing How Language Models Handle Facts and Counterfactuals [82.68757839524677]
解釈可能性研究は、経験的成功と大規模言語モデル(LLM)の科学的理解のギャップを埋めることを目的としている。
本稿では,個々のメカニズムではなく,複数のメカニズムの相互作用に着目した,メカニズムの競合の定式化を提案する。
本研究は, 種々のモデル成分間の機構とその競合の痕跡を示し, 特定の機構の強度を効果的に制御する注意位置を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T17:26:51Z) - Transformer Mechanisms Mimic Frontostriatal Gating Operations When
Trained on Human Working Memory Tasks [19.574270595733502]
簡単なシーケンスモデリングタスクで訓練されたバニラアテンションのみのトランスフォーマー内で発生するメカニズムを解析する。
トレーニングの結果,Transformer内の自己認識機構が,入力と出力のゲーティング機構を反映する方法で特化していることが判明した。
論文 参考訳(メタデータ) (2024-02-13T04:28:43Z) - Pure Differential Privacy for Functional Summaries via a Laplace-like
Process [8.557392136621894]
この研究は、機能的な要約に差分プライバシーの新たなメカニズムを導入する。
独立成分置換プロセス(ICLP)機構は、関心の要約を真に無限次元のオブジェクトとして扱う。
合成および実データセットに関する数値実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-08-31T20:24:51Z) - Properties from Mechanisms: An Equivariance Perspective on Identifiable
Representation Learning [79.4957965474334]
教師なし表現学習の主な目標は、データ生成プロセスが潜在プロパティを回復するために「反転」することである。
この論文は「進化を支配するメカニズムの知識を活用して潜伏特性を識別するのか?」と問う。
我々は、可能なメカニズムの集合に関する知識が異なるため、不特定性の原因の完全な特徴づけを提供する。
論文 参考訳(メタデータ) (2021-10-29T14:04:08Z) - Transformers with Competitive Ensembles of Independent Mechanisms [97.93090139318294]
隠れた表現とパラメータを複数のメカニズムに分割し、注意を通して情報を交換する新しいトランスフォーマー層を提案する。
TIM を大規模 BERT モデル、画像変換器、および音声強調について研究し、意味的に意味のある専門化とパフォーマンスの向上の証拠を見つけます。
論文 参考訳(メタデータ) (2021-02-27T21:48:46Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
この研究は、自動定理プロバーの人間に対する大きな制限が言語モデルから生成することで対処できる可能性によって動機づけられている。
本稿ではメタマス形式化言語のための自動証明と証明アシスタント GPT-f を提案し,その性能を解析する。
論文 参考訳(メタデータ) (2020-09-07T19:50:10Z) - Is Attention All What You Need? -- An Empirical Investigation on
Convolution-Based Active Memory and Self-Attention [7.967230034960396]
各種能動記憶機構がトランスフォーマーの自己注意に取って代わるかどうかを評価する。
実験の結果、アクティブメモリだけで言語モデリングの自己認識機構に匹敵する結果が得られることが示唆された。
特定のアルゴリズムタスクでは、アクティブメモリメカニズムだけで、自己注意とこれら2つの組み合わせよりも優れています。
論文 参考訳(メタデータ) (2019-12-27T02:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。