Responsible AI in Open Ecosystems: Reconciling Innovation with Risk Assessment and Disclosure
- URL: http://arxiv.org/abs/2409.19104v1
- Date: Fri, 27 Sep 2024 19:09:40 GMT
- Title: Responsible AI in Open Ecosystems: Reconciling Innovation with Risk Assessment and Disclosure
- Authors: Mahasweta Chakraborti, Bert Joseph Prestoza, Nicholas Vincent, Seth Frey,
- Abstract summary: We focus on how model performance evaluation may inform or inhibit probing of model limitations, biases, and other risks.
Our findings can inform AI providers and legal scholars in designing interventions and policies that preserve open-source innovation while incentivizing ethical uptake.
- Score: 4.578401882034969
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid scaling of AI has spurred a growing emphasis on ethical considerations in both development and practice. This has led to the formulation of increasingly sophisticated model auditing and reporting requirements, as well as governance frameworks to mitigate potential risks to individuals and society. At this critical juncture, we review the practical challenges of promoting responsible AI and transparency in informal sectors like OSS that support vital infrastructure and see widespread use. We focus on how model performance evaluation may inform or inhibit probing of model limitations, biases, and other risks. Our controlled analysis of 7903 Hugging Face projects found that risk documentation is strongly associated with evaluation practices. Yet, submissions (N=789) from the platform's most popular competitive leaderboard showed less accountability among high performers. Our findings can inform AI providers and legal scholars in designing interventions and policies that preserve open-source innovation while incentivizing ethical uptake.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
This paper introduces a framework ensuring that AI must be ethical, controllable, viable, and desirable.
Different case studies validate this framework by integrating AI in both academic and practical environments.
arXiv Detail & Related papers (2024-09-25T12:39:28Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
We argue that clearer assessments of risks and harms to users will be possible when we specialize the analysis to more concrete applications and their plausible users.
We conduct a risk-oriented error analysis that could then inform the design of a future system to be deployed with lower risk of harm and better performance.
arXiv Detail & Related papers (2024-08-16T17:23:43Z) - Application of the NIST AI Risk Management Framework to Surveillance Technology [1.5442389863546546]
This study offers an in-depth analysis of the application and implications of the National Institute of Standards and Technology's AI Risk Management Framework (NIST AI RMF)
Given the inherently high-risk and consequential nature of facial recognition systems, our research emphasizes the critical need for a structured approach to risk management in this sector.
arXiv Detail & Related papers (2024-03-22T23:07:11Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
Some researchers fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal.
We propose that major AI developers commit to providing a legal and technical safe harbor.
We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
arXiv Detail & Related papers (2024-03-07T20:55:08Z) - Evolving AI Risk Management: A Maturity Model based on the NIST AI Risk
Management Framework [0.0]
Researchers, government bodies, and organizations have been calling for a shift in the responsible AI community.
We provide a framework for evaluating where organizations sit relative to the emerging consensus on sociotechnical harm mitigation best practices.
arXiv Detail & Related papers (2024-01-26T22:28:25Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
We focus on text summarization, a common NLP task largely overlooked by the responsible AI community.
We conduct a multi-round qualitative analysis of 333 summarization papers from the ACL Anthology published between 2020-2022.
We focus on how, which, and when responsible AI issues are covered, which relevant stakeholders are considered, and mismatches between stated and realized research goals.
arXiv Detail & Related papers (2023-11-18T15:35:36Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AI-based systems are increasingly being leveraged to provide value to organizations, individuals, and society.
Risks have led to proposed regulations, litigation, and general societal concerns.
This paper explores the concept of a quantitative AI Risk Assessment.
arXiv Detail & Related papers (2022-09-13T21:47:25Z) - Institutionalising Ethics in AI through Broader Impact Requirements [8.793651996676095]
We reflect on a novel governance initiative by one of the world's largest AI conferences.
NeurIPS introduced a requirement for submitting authors to include a statement on the broader societal impacts of their research.
We investigate the risks, challenges and potential benefits of such an initiative.
arXiv Detail & Related papers (2021-05-30T12:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.