論文の概要: A Characterization of List Regression
- arxiv url: http://arxiv.org/abs/2409.19218v1
- Date: Sat, 28 Sep 2024 03:19:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 00:28:26.087268
- Title: A Characterization of List Regression
- Title(参考訳): リスト回帰の特徴付け
- Authors: Chirag Pabbaraju, Sahasrajit Sarmasarkar,
- Abstract要約: リスト回帰の完全な特徴付けを提供する。
我々は、$k$-OIG次元と$k$-fat-shattering次元という2つの次元を提案し、それぞれに実現可能な回帰と$k$-list回帰を最適に特徴付けることを示す。
- 参考スコア(独自算出の注目度): 5.371337604556312
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been a recent interest in understanding and characterizing the sample complexity of list learning tasks, where the learning algorithm is allowed to make a short list of $k$ predictions, and we simply require one of the predictions to be correct. This includes recent works characterizing the PAC sample complexity of standard list classification and online list classification. Adding to this theme, in this work, we provide a complete characterization of list PAC regression. We propose two combinatorial dimensions, namely the $k$-OIG dimension and the $k$-fat-shattering dimension, and show that they optimally characterize realizable and agnostic $k$-list regression respectively. These quantities generalize known dimensions for standard regression. Our work thus extends existing list learning characterizations from classification to regression.
- Abstract(参考訳): 最近、リスト学習タスクのサンプルの複雑さを理解し、特徴付けることに関心が寄せられ、そこでは、学習アルゴリズムが$k$の予測の短いリストを作ることができる。
この中には、標準リスト分類とオンラインリスト分類のPACサンプルの複雑さを特徴づける最近の研究が含まれている。
このテーマに加え、本研究では、リストPAC回帰の完全な特徴付けを提供する。
本稿では,2つの組合せ次元,すなわち$k$-OIG次元と$k$-fat-shattering次元を提案する。
これらの量は標準回帰のために既知の次元を一般化する。
これにより、既存のリスト学習の特徴を分類から回帰まで拡張する。
関連論文リスト
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
単次元モデル(Single-Index Models)は、植木構造における高次元回帰問題である。
我々は,統計的クエリ (SQ) と低遅延多項式 (LDP) フレームワークの両方において,計算効率のよいアルゴリズムが必ずしも$Omega(dkstar/2)$サンプルを必要とすることを示した。
論文 参考訳(メタデータ) (2024-03-08T18:50:19Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
本稿では,2つのタスクを同時に実行可能なRe rank-Truncation joint model(GenRT)を提案する。
GenRTは、エンコーダ-デコーダアーキテクチャに基づく生成パラダイムによるリランクとトランケーションを統合している。
提案手法は,Web検索および検索拡張LLMにおけるリランクタスクとトラルケーションタスクの両方においてSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-02-05T06:52:53Z) - Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
コンピュータビジョンにおける回帰タスクは、しばしば、対象空間をクラスに定量化することで分類される。
トレーニングサンプルの大多数は目標値の先頭にあるが、少数のサンプルは通常より広い尾幅に分布する。
不均衡回帰タスクを解くために階層型分類器を構築することを提案する。
不均衡回帰のための新しい階層型分類調整(HCA)は,3つのタスクにおいて優れた結果を示す。
論文 参考訳(メタデータ) (2023-10-26T04:54:39Z) - List Online Classification [13.358536176734999]
学習者が複数のラベルのリストを用いて予測できるマルチクラスオンライン予測について検討する。
我々は、このモデルにおける学習可能性について、$b$-ary Littlestone 次元を用いて特徴づける。
私たちの研究の一環として、ラベルのリストを使って予測するために、LittlestoneのSOAやRosenblattのPerceptronのような古典的なアルゴリズムを適用しました。
論文 参考訳(メタデータ) (2023-03-27T16:56:57Z) - Rank-LIME: Local Model-Agnostic Feature Attribution for Learning to Rank [16.780058676633914]
Rank-LIMEは、モデルに依存しない局所的、ポストホック的特徴属性法である。
我々は,新しい相関に基づく摂動,微分可能なランキング損失関数を導入し,ランキングに基づく付加的特徴帰属モデルを評価するための新しい指標を導入する。
論文 参考訳(メタデータ) (2022-12-24T12:14:32Z) - What learning algorithm is in-context learning? Investigations with
linear models [87.91612418166464]
本稿では,トランスフォーマーに基づくインコンテキスト学習者が標準学習アルゴリズムを暗黙的に実装する仮説について検討する。
訓練された文脈内学習者は、勾配降下、隆起回帰、および正確な最小二乗回帰によって計算された予測値と密に一致していることを示す。
文脈内学習者がこれらの予測器とアルゴリズム的特徴を共有するという予備的証拠。
論文 参考訳(メタデータ) (2022-11-28T18:59:51Z) - A Characterization of List Learnability [15.368858716555888]
我々は、$k$の予測リストを出力することを目標とするPAC学習について検討する。
最近のマルチクラス学習可能性の特徴を一般化すると、仮説クラスが$k$-list学習可能であることと、$k$-DS次元が有限であることは同値である。
論文 参考訳(メタデータ) (2022-11-07T21:28:05Z) - OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal
Regression [94.28253749970534]
我々は、リッチなセマンティックCLIP潜在空間からランクの概念を学ぶことを提案する。
OrdinalCLIPは学習可能なコンテキストトークンと学習可能なランク埋め込みで構成されている。
実験結果から,本パラダイムは一般順序回帰タスクにおける競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-06-06T03:54:53Z) - UCSL : A Machine Learning Expectation-Maximization framework for
Unsupervised Clustering driven by Supervised Learning [2.133032470368051]
Subtype Discoveryは、データセットの解釈可能で一貫性のあるサブ部分を見つけることで構成される。
UCSL (Unsupervised Clustering driven by Supervised Learning) という汎用的な期待最大化アンサンブルフレームワークを提案する。
我々の手法は汎用的であり、任意のクラスタリング手法を統合することができ、バイナリ分類と回帰の両方によって駆動することができる。
論文 参考訳(メタデータ) (2021-07-05T12:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。