論文の概要: Edit-Constrained Decoding for Sentence Simplification
- arxiv url: http://arxiv.org/abs/2409.19247v1
- Date: Sat, 28 Sep 2024 05:39:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 00:18:22.588863
- Title: Edit-Constrained Decoding for Sentence Simplification
- Title(参考訳): 文の簡易化のための編集制約付き復号法
- Authors: Tatsuya Zetsu, Yuki Arase, Tomoyuki Kajiwara,
- Abstract要約: 文単純化のための語彙制約付きデコードに基づく編集操作を提案する。
提案手法は, この課題によく用いられる3つの英語単純化コーパスにおいて, 従来よりも一貫して優れていた。
- 参考スコア(独自算出の注目度): 16.795671075667205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose edit operation based lexically constrained decoding for sentence simplification. In sentence simplification, lexical paraphrasing is one of the primary procedures for rewriting complex sentences into simpler correspondences. While previous studies have confirmed the efficacy of lexically constrained decoding on this task, their constraints can be loose and may lead to sub-optimal generation. We address this problem by designing constraints that replicate the edit operations conducted in simplification and defining stricter satisfaction conditions. Our experiments indicate that the proposed method consistently outperforms the previous studies on three English simplification corpora commonly used in this task.
- Abstract(参考訳): 文単純化のための語彙制約付きデコードに基づく編集操作を提案する。
文の単純化において、語彙パラフレーズは複雑な文を単純な文に書き換える主要な手続きの1つである。
これまでの研究では、このタスクにおける語彙的に制約されたデコードの有効性が確認されているが、それらの制約は緩くなり、最適以下の生成につながる可能性がある。
本稿では, 簡易化時に行われる編集操作を再現する制約を設計し, より厳密な満足度条件を定義することで, この問題に対処する。
提案手法は, この課題によく用いられる3つの英語単純化コーパスにおいて, 従来よりも一貫して優れていた。
関連論文リスト
- Discourse-Aware Text Simplification: From Complex Sentences to Linked
Propositions [11.335080241393191]
Text Simplification (TS)は、テキストの処理を容易にするために文を変更することを目的としている。
本稿では、複雑な英語文を分割し、言い換える、談話対応のTSアプローチを提案する。
単純化された文の上に意味層を置く最小命題のセマンティック階層を生成する。
論文 参考訳(メタデータ) (2023-08-01T10:10:59Z) - Elaborative Simplification as Implicit Questions Under Discussion [51.17933943734872]
本稿では,QUD フレームワークのレンズによる共同作業の簡略化について考察する。
本研究は,QUDを明示的にモデル化することで,作業の単純化と,作業内容と作業内容の関連性について,重要な理解が得られていることを示す。
論文 参考訳(メタデータ) (2023-05-17T17:26:16Z) - Exploiting Summarization Data to Help Text Simplification [50.0624778757462]
テキスト要約とテキスト単純化の類似性を解析し,要約データを利用して単純化を行った。
我々はこれらのペアをSum4Simp (S4S) と命名し,S4Sが高品質であることを示す人間評価を行った。
論文 参考訳(メタデータ) (2023-02-14T15:32:04Z) - Unsupervised Sentence Simplification via Dependency Parsing [4.337513096197002]
本稿では,単純だが教師なしの文簡略化システムを提案する。
構文解析と文の埋め込みを利用して言語学的に効果的な単純化を生成する。
我々は、テュルクコルプスの39.13 SARIにおいて、教師なしの最先端を定め、様々な品質指標の教師なしベースラインに対して競争的に行動する。
論文 参考訳(メタデータ) (2022-06-10T07:55:25Z) - GRS: Combining Generation and Revision in Unsupervised Sentence
Simplification [7.129708913903111]
テキスト生成とテキストリビジョンを組み合わせた文単純化のための教師なしアプローチを提案する。
まず、明示的な編集操作を用いて入力文を書き換える反復的なフレームワークから始め、新しい編集操作としてパラフレーズを追加する。
パラフレーズ化は複雑な編集操作をキャプチャし、明示的な編集操作を反復的に使用することで、制御性と解釈性を提供する。
論文 参考訳(メタデータ) (2022-03-18T04:52:54Z) - Controllable Text Simplification with Explicit Paraphrasing [88.02804405275785]
テキストの単純化は、語彙パラフレーズ、削除、分割など、いくつかの書き換え変換を通じて文の可読性を向上させる。
現在の単純化システムは、主にシーケンス・ツー・シーケンスのモデルであり、これらすべての操作を同時に実行するためにエンドツーエンドで訓練されている。
そこで我々は,言語的に動機づけられた規則を用いて分割と削除を行い,それらをニューラルパラフレーズモデルと組み合わせて様々な書き直しスタイルを創出するハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2020-10-21T13:44:40Z) - Recurrent Inference in Text Editing [6.4689151804633775]
本稿では,反復的に編集動作を行う新しい推論手法Recurrenceを提案する。
各イテレーションにおいて、部分的に編集されたテキストをエンコードするRecurrenceは、潜在表現をデコードし、短い、固定長のアクションを生成し、そのアクションを適用して単一の編集を完了させる。
総合的な比較として、算術演算子復元(AOR)、算術演算子単純化(AES)、算術演算子補正(AEC)の3種類のテキスト編集タスクを紹介する。
論文 参考訳(メタデータ) (2020-09-26T17:06:29Z) - Explainable Prediction of Text Complexity: The Missing Preliminaries for
Text Simplification [13.447565774887215]
テキストの単純化により、アクセシビリティーのためにプロのコンテンツが複雑になる。
入力テキストの簡易版を直接生成するために、エンドツーエンドのニューラルネットワークモデルが広く採用されている。
テキストの単純化をタスクのコンパクトなパイプラインに分解することで、プロセスの透明性と説明可能性を確保することができることを示す。
論文 参考訳(メタデータ) (2020-07-31T03:33:37Z) - Neural Syntactic Preordering for Controlled Paraphrase Generation [57.5316011554622]
私たちの研究は、構文変換を使用して、ソース文をソフトに"リオーダー"し、神経パラフレージングモデルをガイドします。
まず、入力文が与えられた場合、エンコーダ・デコーダモデルを用いて、実行可能な構文再構成のセットを導出する。
次に、提案した各再構成を用いて位置埋め込みのシーケンスを生成し、最終的なエンコーダ-デコーダパラフレーズモデルが特定の順序でソース語に従属することを奨励する。
論文 参考訳(メタデータ) (2020-05-05T09:02:25Z) - ASSET: A Dataset for Tuning and Evaluation of Sentence Simplification
Models with Multiple Rewriting Transformations [97.27005783856285]
本稿では,英語で文の単純化を評価するための新しいデータセットであるASSETを紹介する。
ASSETの単純化は、タスクの他の標準評価データセットと比較して、単純さの特徴を捉えるのに優れていることを示す。
論文 参考訳(メタデータ) (2020-05-01T16:44:54Z) - Fact-aware Sentence Split and Rephrase with Permutation Invariant
Training [93.66323661321113]
Sentence Split と Rephrase は、複雑な文をいくつかの単純な文に分解し、その意味を保存することを目的としている。
従来の研究では、パラレル文対からのSeq2seq学習によってこの問題に対処する傾向があった。
本稿では,この課題に対するSeq2seq学習における順序分散の効果を検証するために,置換訓練を導入する。
論文 参考訳(メタデータ) (2020-01-16T07:30:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。