論文の概要: HybridFlow: A Flexible and Efficient RLHF Framework
- arxiv url: http://arxiv.org/abs/2409.19256v2
- Date: Wed, 2 Oct 2024 04:01:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 00:18:22.567353
- Title: HybridFlow: A Flexible and Efficient RLHF Framework
- Title(参考訳): HybridFlow: 柔軟で効率的なRLHFフレームワーク
- Authors: Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, Chuan Wu,
- Abstract要約: 人間のフィードバックからの強化学習は、Large Language Model (LLM)アライメントで広く使われている。
従来のRLはデータフローとしてモデル化することができ、各ノードはニューラルネットワーク(NN)の計算を表す。
RLHFデータフローの柔軟な表現と効率的な実行を可能にするために,シングルコントローラとマルチコントローラのパラダイムをハイブリッド方式で組み合わせたHybridFlowを提案する。
- 参考スコア(独自算出の注目度): 13.80577212781375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning from Human Feedback (RLHF) is widely used in Large Language Model (LLM) alignment. Traditional RL can be modeled as a dataflow, where each node represents computation of a neural network (NN) and each edge denotes data dependencies between the NNs. RLHF complicates the dataflow by expanding each node into a distributed LLM training or generation program, and each edge into a many-to-many multicast. Traditional RL frameworks execute the dataflow using a single controller to instruct both intra-node computation and inter-node communication, which can be inefficient in RLHF due to large control dispatch overhead for distributed intra-node computation. Existing RLHF systems adopt a multi-controller paradigm, which can be inflexible due to nesting distributed computation and data communication. We propose HybridFlow, which combines single-controller and multi-controller paradigms in a hybrid manner to enable flexible representation and efficient execution of the RLHF dataflow. We carefully design a set of hierarchical APIs that decouple and encapsulate computation and data dependencies in the complex RLHF dataflow, allowing efficient operation orchestration to implement RLHF algorithms and flexible mapping of the computation onto various devices. We further design a 3D-HybridEngine for efficient actor model resharding between training and generation phases, with zero memory redundancy and significantly reduced communication overhead. Our experimental results demonstrate 1.53$\times$~20.57$\times$ throughput improvement when running various RLHF algorithms using HybridFlow, as compared with state-of-the-art baselines. HybridFlow source code will be available at https://github.com/volcengine/verl.
- Abstract(参考訳): Reinforcement Learning from Human Feedback (RLHF) はLarge Language Model (LLM) アライメントで広く使われている。
従来のRLはデータフローとしてモデル化することができ、各ノードはニューラルネットワーク(NN)の計算を表し、各エッジはNN間のデータ依存関係を表す。
RLHFは、各ノードを分散LLMトレーニングまたは生成プログラムに拡張し、各エッジを多対多のマルチキャストにすることで、データフローを複雑化する。
従来のRLフレームワークは、単一コントローラを使用してデータフローを実行し、ノード内計算とノード間通信の両方を指示する。
既存のRLHFシステムはマルチコントローラパラダイムを採用しており、分散計算とデータ通信のネストにより柔軟性が低い。
RLHFデータフローの柔軟な表現と効率的な実行を可能にするために,シングルコントローラとマルチコントローラのパラダイムをハイブリッド方式で組み合わせたHybridFlowを提案する。
我々は、複雑なRLHFデータフローで計算とデータ依存関係を分離・カプセル化する階層型APIを慎重に設計し、効率的な演算オーケストレーションにより、RLHFアルゴリズムを実装し、計算の様々なデバイスへの柔軟なマッピングを可能にする。
さらに、トレーニングと生成フェーズ間の効率的なアクターモデルリシャーディングのための3D-HybridEngineを設計し、メモリ冗長性をなくし、通信オーバーヘッドを大幅に削減する。
実験の結果,HybridFlowを用いてRLHFアルゴリズムを動作させる場合のスループットは,最先端のベースラインと比較して1.53$\times$~20.57$\times$であることがわかった。
HybridFlowのソースコードはhttps://github.com/volcengine/verl.comから入手できる。
関連論文リスト
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - RLHFuse: Efficient RLHF Training for Large Language Models with Inter- and Intra-Stage Fusion [10.165579735221092]
既存のRLHFシステムは、プロダクションデプロイメントにおけるGPU利用の低さに悩まされている。
RLHFuseは、個々のタスクの合成として、従来のRLHFワークフローのビューを分解する。
RLHFuseは既存の最先端システムと比較してトレーニングのスループットを最大3.7倍に向上させる。
論文 参考訳(メタデータ) (2024-09-20T05:15:38Z) - RLHF Workflow: From Reward Modeling to Online RLHF [79.83927049253924]
本稿では,RLHF(Online Iterative Reinforcement Learning from Human Feedback)のワークフローについて報告する。
RLHFは、最近の大規模言語モデル(LLM)文学において、オフライン言語よりもはるかに優れていると広く報告されている。
教師付き微調整(SFT)と反復RLHFは,完全なオープンソースデータセットを用いて最先端の性能を得ることができることを示す。
論文 参考訳(メタデータ) (2024-05-13T15:50:39Z) - Efficient Parallel Reinforcement Learning Framework using the Reactor
Model [2.190190313041532]
強化学習(RL)フレームワークは、RLワークロードを複数の計算リソースにマッピングするために不可欠である。
Rayのような既存のフレームワークは、このオーケストレーションを効率的に管理していない。
我々は,アクターの集合が固定的な通信パターンを持つように強制するリアクターモデルを実装するソリューションを提案している。
論文 参考訳(メタデータ) (2023-12-07T21:19:57Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated Learning(FL)は、明示的なデータ共有を避けながら協調的なモデルトレーニングを可能にする分散機械学習技術である。
本稿では,Auto-FedRLと呼ばれる,効率的な強化学習(RL)に基づくフェデレーションハイパーパラメータ最適化アルゴリズムを提案する。
提案手法の有効性は,CIFAR-10データセットと2つの実世界の医用画像セグメンテーションデータセットの不均一なデータ分割に対して検証される。
論文 参考訳(メタデータ) (2022-03-12T04:11:42Z) - OneFlow: Redesign the Distributed Deep Learning Framework from Scratch [17.798586916628174]
OneFlowは、SBP(スプリット、ブロードキャスト、部分値)の抽象化とアクターモデルに基づく、新しい分散トレーニングフレームワークである。
SBPは既存のフレームワークよりも、データ並列処理やモデル並列処理のプログラミングがずっと簡単になります。
OneFlowは、最先端のフレームワーク上に構築された多くの有名なカスタマイズライブラリよりも優れています。
論文 参考訳(メタデータ) (2021-10-28T11:32:14Z) - RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem [37.38316954355031]
分散強化学習による課題を再検討する。
本稿では,RLをデータフロー問題と見なすと,構成性が高く,性能も高い実装が得られることを示す。
分散RLのためのハイブリッドアクターデータフローモデルであるRLlib Flowを提案する。
論文 参考訳(メタデータ) (2020-11-25T13:28:16Z) - Training Recommender Systems at Scale: Communication-Efficient Model and
Data Parallelism [56.78673028601739]
通信効率のよいハイブリッドトレーニングのためのDCT(Dynamic Communication Thresholding)という圧縮フレームワークを提案する。
DCTは、それぞれDPとMPの間に、少なくとも$100times$と$20times$の通信を削減します。
最先端の産業レコメンデーションモデルのエンドツーエンドのトレーニング時間を、パフォーマンスを損なうことなく、37%改善する。
論文 参考訳(メタデータ) (2020-10-18T01:44:42Z) - Scheduling Policy and Power Allocation for Federated Learning in NOMA
Based MEC [21.267954799102874]
Federated Learning(FL)は、データ分散を維持しながらモデルを集中的にトレーニングできる、高度に追求された機械学習技術である。
重み付き和データレートを最大化するために、非直交多重アクセス(NOMA)設定を用いた新しいスケジューリングポリシーと電力割当方式を提案する。
シミュレーションの結果,提案手法は,NOMAベースの無線ネットワークにおいて高いFLテスト精度を実現するのに有効であることがわかった。
論文 参考訳(メタデータ) (2020-06-21T23:07:41Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。