論文の概要: Sustaining model performance for covid-19 detection from dynamic audio data: Development and evaluation of a comprehensive drift-adaptive framework
- arxiv url: http://arxiv.org/abs/2409.19300v1
- Date: Sat, 28 Sep 2024 10:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 00:08:33.390607
- Title: Sustaining model performance for covid-19 detection from dynamic audio data: Development and evaluation of a comprehensive drift-adaptive framework
- Title(参考訳): ダイナミックオーディオデータからのcovid-19検出のためのモデル性能の維持:包括的ドリフト適応フレームワークの開発と評価
- Authors: Theofanis Ganitidis, Maria Athanasiou, Konstantinos Mitsis, Konstantia Zarkogianni, Konstantina S. Nikita,
- Abstract要約: 新型コロナウイルスのパンデミックは、多様なデータソースから病気を検出できる堅牢な診断ツールの必要性を強調している。
実世界のデータのダイナミックな性質は、基礎となるデータ分散が変化するにつれて、パフォーマンスが時間の経過とともに低下するモデルドリフトにつながる可能性がある。
本研究の目的は,モデルドリフトをモニタし,適応機構を用いて性能変動を緩和するフレームワークを開発することである。
- 参考スコア(独自算出の注目度): 0.5679775668038152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: The COVID-19 pandemic has highlighted the need for robust diagnostic tools capable of detecting the disease from diverse and evolving data sources. Machine learning models, especially convolutional neural networks (CNNs), have shown promise. However, the dynamic nature of real-world data can lead to model drift, where performance degrades over time as the underlying data distribution changes. Addressing this challenge is crucial to maintaining accuracy and reliability in diagnostic applications. Objective: This study aims to develop a framework that monitors model drift and employs adaptation mechanisms to mitigate performance fluctuations in COVID-19 detection models trained on dynamic audio data. Methods: Two crowd-sourced COVID-19 audio datasets, COVID-19 Sounds and COSWARA, were used. Each was divided into development and post-development periods. A baseline CNN model was trained and evaluated using cough recordings from the development period. Maximum mean discrepancy (MMD) was used to detect changes in data distributions and model performance between periods. Upon detecting drift, retraining was triggered to update the baseline model. Two adaptation approaches were compared: unsupervised domain adaptation (UDA) and active learning (AL). Results: UDA improved balanced accuracy by up to 22% and 24% for the COVID-19 Sounds and COSWARA datasets, respectively. AL yielded even greater improvements, with increases of up to 30% and 60%, respectively. Conclusions: The proposed framework addresses model drift in COVID-19 detection, enabling continuous adaptation to evolving data. This approach ensures sustained model performance, contributing to robust diagnostic tools for COVID-19 and potentially other infectious diseases.
- Abstract(参考訳): 背景:新型コロナウイルス(COVID-19)パンデミックは、多様なデータソースから病気を検出する堅牢な診断ツールの必要性を強調している。
機械学習モデル、特に畳み込みニューラルネットワーク(CNN)は、将来性を示している。
しかし、実世界のデータのダイナミックな性質は、基礎となるデータ分布が変化するにつれて、パフォーマンスが経時的に低下するモデルドリフトにつながる可能性がある。
この課題に対処することは、診断アプリケーションの正確性と信頼性を維持するために不可欠である。
目的: 本研究の目的は, モデルドリフトを監視し, 動的オーディオデータに基づいて訓練された新型コロナウイルス検出モデルの性能変動を軽減するための適応機構を用いたフレームワークを開発することである。
方法:クラウドソースされた2つのCOVID-19オーディオデータセット、COVID-19 SoundsとCOSWARAを使用した。
開発期間は開発期間と開発期間に分けられた。
ベースラインCNNモデルを訓練し, 発達期からのコークス記録を用いて評価した。
最大平均誤差(MMD)は,データ分布の変化と周期間のモデル性能を検出するために用いられた。
ドリフトを検出すると、リトレーニングがトリガーされ、ベースラインモデルが更新された。
非教師付きドメイン適応(UDA)とアクティブラーニング(AL)の2つのアプローチを比較した。
結果: UDAは、それぞれCOVID-19 SoundsとCOSWARAデータセットで、バランスの取れた精度を最大22%改善した。
ALはさらに改善され、それぞれ30%と60%に向上した。
結論: 提案されたフレームワークは、新型コロナウイルス検出におけるモデルドリフトに対処し、進化するデータへの継続的適応を可能にする。
このアプローチは、持続的なモデルパフォーマンスを保証し、新型コロナウイルスや他の潜在的な感染症の堅牢な診断ツールに寄与する。
関連論文リスト
- Early Diagnosis of Alzheimer's Diseases and Dementia from MRI Images Using an Ensemble Deep Learning [0.7510165488300369]
アルツハイマー病(英語: Alzheimer's Disease, AD)は、認知障害や認知失調を引き起こす進行性神経疾患である。
本研究では,ADの初期段階を正確に検出するために,IR-BRAINNETとModified-DEMNETの2つのCNNを提案する。
また、CNN間のばらつきを低減し、AD検出を向上させるために出力を平均化するアンサンブルモデルも導入した。
論文 参考訳(メタデータ) (2024-12-07T14:27:41Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Domain Adaptation Using Pseudo Labels for COVID-19 Detection [19.844531606142496]
ドメイン適応のために擬似ラベルを利用する2段階のフレームワークを提案する。
あるドメインからのアノテートデータと別のドメインからの非アノテートデータを利用することで、モデルはデータの不足と可変性の課題を克服する。
COV19-CT-DBデータベースの実験結果は、高い診断精度を達成するためのモデルの可能性を示している。
論文 参考訳(メタデータ) (2024-03-18T06:07:45Z) - An AI-enabled Bias-Free Respiratory Disease Diagnosis Model using Cough
Audio: A Case Study for COVID-19 [1.1146119513912156]
トレーニングデータ配信における共同創設者の影響を軽減するため, Bias Free Network (RBFNet) を提案する。
RBFNetは正確なRD診断機能を保証し、COVID19データセットを組み込むことでその関連性を強調する。
条件付き生成Adrial Network (cGAN) を定式化するための分類スキームに新たなバイアス予測器が組み込まれている
論文 参考訳(メタデータ) (2024-01-04T13:09:45Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
連続ビデオドメイン適応(CVDA、Continuous Video Domain Adaptation)は、ソースモデルが個々の変更対象ドメインに適応する必要があるシナリオである。
CVDAの課題に対処するため,遺伝子組み換え型自己知識解離(CART)を用いた信頼性保証ネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-18T16:40:10Z) - Back to the Source: Diffusion-Driven Test-Time Adaptation [77.4229736436935]
テスト時間適応はテスト入力を利用し、シフトしたターゲットデータ上でテストした場合、ソースデータに基づいてトレーニングされたモデルの精度を向上させる。
代わりに、生成拡散モデルを用いて、すべてのテスト入力をソース領域に向けて投影することで、ターゲットデータを更新する。
論文 参考訳(メタデータ) (2022-07-07T17:14:10Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
深層学習アルゴリズムの統合による心電図(ECG)データの利用により、COVID-19を自動的に診断するための新しいアプローチが提案されている。
CNNモデルは、VGG16、VGG19、InceptionResnetv2、InceptionV3、Resnet50、Densenet201を含む提案されたフレームワークで利用されている。
この結果,VGG16モデルと比較すると,他のモデルに比べて比較的精度が低いことがわかった。
論文 参考訳(メタデータ) (2021-12-15T08:06:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - End-2-End COVID-19 Detection from Breath & Cough Audio [68.41471917650571]
クラウドソースのオーディオサンプルからエンドツーエンドのディープラーニングを使用してCOVID-19を診断する最初の試みを実証します。
本研究では, 人工深層ニューラルネットワークを用いて, 人工呼吸器から新型コロナを診断する新しいモデル戦略を提案する。
論文 参考訳(メタデータ) (2021-01-07T01:13:00Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。