論文の概要: Privacy Attack in Federated Learning is Not Easy: An Experimental Study
- arxiv url: http://arxiv.org/abs/2409.19301v1
- Date: Sat, 28 Sep 2024 10:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 00:08:33.387164
- Title: Privacy Attack in Federated Learning is Not Easy: An Experimental Study
- Title(参考訳): フェデレーション学習におけるプライバシー侵害は容易ではない:実験的検討
- Authors: Hangyu Zhu, Liyuan Huang, Zhenping Xie,
- Abstract要約: フェデレートラーニング(Federated Learning, FL)は、プライバシ保護のために提案される分散機械学習のパラダイムである。
近年の研究では、FLはプライバシー保護を完全に保証できないことが示されている。
プライバシ攻撃FLアルゴリズムが現実的なフェデレーション環境で有効かどうかは不明だ。
- 参考スコア(独自算出の注目度): 5.065947993017158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging distributed machine learning paradigm proposed for privacy preservation. Unlike traditional centralized learning approaches, FL enables multiple users to collaboratively train a shared global model without disclosing their own data, thereby significantly reducing the potential risk of privacy leakage. However, recent studies have indicated that FL cannot entirely guarantee privacy protection, and attackers may still be able to extract users' private data through the communicated model gradients. Although numerous privacy attack FL algorithms have been developed, most are designed to reconstruct private data from a single step of calculated gradients. It remains uncertain whether these methods are effective in realistic federated environments or if they have other limitations. In this paper, we aim to help researchers better understand and evaluate the effectiveness of privacy attacks on FL. We analyze and discuss recent research papers on this topic and conduct experiments in a real FL environment to compare the performance of various attack methods. Our experimental results reveal that none of the existing state-of-the-art privacy attack algorithms can effectively breach private client data in realistic FL settings, even in the absence of defense strategies. This suggests that privacy attacks in FL are more challenging than initially anticipated.
- Abstract(参考訳): フェデレートラーニング(Federated Learning, FL)は、プライバシ保護のために提案される分散機械学習のパラダイムである。
従来の集中型学習アプローチとは異なり、FLでは、複数のユーザが自身のデータを開示することなく、共有グローバルモデルを共同でトレーニングすることができるため、プライバシー漏洩のリスクが大幅に低減される。
しかし、最近の研究では、FLはプライバシー保護を完全に保証することはできないことが示されており、攻撃者は通信モデル勾配を通じてユーザーのプライベートデータを抽出できる可能性がある。
多くのプライバシ攻撃FLアルゴリズムが開発されているが、その多くは計算された勾配の単一ステップからプライベートデータを再構築するように設計されている。
これらの手法が現実的なフェデレーション環境で有効かどうか、あるいは他の制限があるかどうかは不明だ。
本稿では,FLに対するプライバシ攻撃の有効性を研究者がよりよく理解し,評価することを目的としている。
本稿では,この話題に関する最近の研究論文を分析し,実際のFL環境で実験を行い,様々な攻撃手法の性能を比較した。
我々の実験結果によると、既存の最先端のプライバシー攻撃アルゴリズムは、防衛戦略がなくても、現実的なFL設定でプライベートクライアントデータを効果的に侵害することはできない。
これは、FLにおけるプライバシー攻撃が、当初予想されていたよりも難しいことを示唆している。
関連論文リスト
- Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization [16.418338197742287]
フェデレートラーニング(FL)は、データのソースへの配置を可能にすることによって、データのプライバシを改善するために設計されたパラダイムとして登場した。
最近の知見は、分散FLは、集中型モデルよりも追加のプライバシやセキュリティ上のメリットを経験的に提供していないことを示唆している。
分散最適化をデプロイする際の分散FLは、プライバシー保護の強化を実証する。
論文 参考訳(メタデータ) (2024-07-12T15:01:09Z) - Federated Learning Privacy: Attacks, Defenses, Applications, and Policy Landscape - A Survey [27.859861825159342]
ディープラーニングは、さまざまなタスクにおいて、信じられないほど大きな可能性を秘めている。
プライバシーに関する最近の懸念は、そのようなデータにアクセスする際の課題をさらに強調している。
フェデレーション学習は重要なプライバシー保護技術として登場した。
論文 参考訳(メタデータ) (2024-05-06T16:55:20Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Federated Learning with Reduced Information Leakage and Computation [17.069452700698047]
フェデレートラーニング(Federated Learning, FL)は、分散学習パラダイムであり、複数の分散クライアントが、ローカルデータを共有せずに共通のモデルを共同で学習することを可能にする。
本稿では,モデル更新毎に一階近似を適用する手法であるUpcycled-FLを紹介する。
この戦略の下では、FL更新の半分は情報漏洩を伴わず、計算と送信のコストを大幅に削減する。
論文 参考訳(メタデータ) (2023-10-10T06:22:06Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated Learning(FL)は、参加者が個々のデータセットを共有することなく、協力し、共有モデルをトレーニングすることのできる、分散機械学習戦略である。
FLではプライバシと公平性が重要な考慮事項である。
本稿では、検証データなしで公正なグローバルモデルを作成し、グローバルなプライベートディファレンシャルモデルを作成するという課題に対処する枠組みを提案する。
論文 参考訳(メタデータ) (2023-05-23T09:58:48Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning(FL)は、多くのローカルノードがトレーニングデータを分散化しながら、中央モデルを協調的にトレーニングする機械学習パラダイムである。
本稿では,未ラベル公開データを利用した一方向オフライン知識蒸留のためのプライバシー保護FLフレームワークを提案する。
我々の技術は、既存のFLアプローチのような分散的で異質なローカルデータを使用するが、より重要なのは、プライバシー漏洩のリスクを著しく低減することです。
論文 参考訳(メタデータ) (2022-10-16T06:44:46Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。