Co-design of a novel CMOS highly parallel, low-power, multi-chip neural network accelerator
- URL: http://arxiv.org/abs/2409.19389v1
- Date: Sat, 28 Sep 2024 15:47:16 GMT
- Title: Co-design of a novel CMOS highly parallel, low-power, multi-chip neural network accelerator
- Authors: W Hokenmaier, R Jurasek, E Bowen, R Granger, D Odom,
- Abstract summary: We present the NV-1, a new low-power ASIC AI processor that greatly accelerates parallel processing (> 10X) with dramatic reduction in energy consumption.
The resulting device is currently being used in a fielded edge sensor application.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Why do security cameras, sensors, and siri use cloud servers instead of on-board computation? The lack of very-low-power, high-performance chips greatly limits the ability to field untethered edge devices. We present the NV-1, a new low-power ASIC AI processor that greatly accelerates parallel processing (> 10X) with dramatic reduction in energy consumption (> 100X), via many parallel combined processor-memory units, i.e., a drastically non-von-Neumann architecture, allowing very large numbers of independent processing streams without bottlenecks due to typical monolithic memory. The current initial prototype fab arises from a successful co-development effort between algorithm- and software-driven architectural design and VLSI design realities. An innovative communication protocol minimizes power usage, and data transport costs among nodes were vastly reduced by eliminating the address bus, through local target address matching. Throughout the development process, the software and architecture teams were able to innovate alongside the circuit design team's implementation effort. A digital twin of the proposed hardware was developed early on to ensure that the technical implementation met the architectural specifications, and indeed the predicted performance metrics have now been thoroughly verified in real hardware test data. The resulting device is currently being used in a fielded edge sensor application; additional proofs of principle are in progress demonstrating the proof on the ground of this new real-world extremely low-power high-performance ASIC device.
Related papers
- Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - REED: Chiplet-Based Accelerator for Fully Homomorphic Encryption [4.713756093611972]
We present the first-of-its-kind multi-chiplet-based FHE accelerator REED' for overcoming the limitations of prior monolithic designs.
Results demonstrate that REED 2.5D microprocessor consumes 96.7 mm$2$ chip area, 49.4 W average power in 7nm technology.
arXiv Detail & Related papers (2023-08-05T14:04:39Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
Deep neural network (DNN) latency characterization is a time-consuming process.
We propose MAPLE-X which extends MAPLE by incorporating explicit prior knowledge of hardware devices and DNN architecture latency.
arXiv Detail & Related papers (2022-05-25T11:08:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - MAPLE: Microprocessor A Priori for Latency Estimation [81.91509153539566]
Modern deep neural networks must demonstrate state-of-the-art accuracy while exhibiting low latency and energy consumption.
Measuring the latency of every evaluated architecture adds a significant amount of time to the NAS process.
We propose Microprocessor A Priori for Estimation Estimation MAPLE that does not rely on transfer learning or domain adaptation.
arXiv Detail & Related papers (2021-11-30T03:52:15Z) - Resistive Neural Hardware Accelerators [0.46198289193451136]
ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
The shift towards ReRAM-based in-memory computing has great potential in the implementation of area and power efficient inference.
In this survey, we review the state-of-the-art ReRAM-based Deep Neural Networks (DNNs) many-core accelerators.
arXiv Detail & Related papers (2021-09-08T21:11:48Z) - From DNNs to GANs: Review of efficient hardware architectures for deep
learning [0.0]
Neural network and deep learning has been started to impact the present research paradigm.
DSP processors are incapable of performing neural network, activation function, convolutional neural network and generative adversarial network operations.
Different algorithms have been adapted to design a DSP processor compatible for fast performance in neural network, activation function, convolutional neural network and generative adversarial network.
arXiv Detail & Related papers (2021-06-06T13:23:06Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z) - DANCE: Differentiable Accelerator/Network Co-Exploration [8.540518473228078]
This work presents a differentiable approach towards the co-exploration of the hardware accelerator and network architecture design.
By modeling the hardware evaluation software with a neural network, the relation between the accelerator architecture and the hardware metrics becomes differentiable.
Compared to the naive existing approaches, our method performs co-exploration in a significantly shorter time, while achieving superior accuracy and hardware cost metrics.
arXiv Detail & Related papers (2020-09-14T07:43:27Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - Near-Optimal Hardware Design for Convolutional Neural Networks [0.0]
This study proposes a novel, special-purpose, and high-efficiency hardware architecture for convolutional neural networks.
The proposed architecture maximizes the utilization of multipliers by designing the computational circuit with the same structure as that of the computational flow of the model.
An implementation based on the proposed hardware architecture has been applied in commercial AI products.
arXiv Detail & Related papers (2020-02-06T09:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.