Fast Encoding and Decoding for Implicit Video Representation
- URL: http://arxiv.org/abs/2409.19429v2
- Date: Tue, 15 Oct 2024 03:18:39 GMT
- Title: Fast Encoding and Decoding for Implicit Video Representation
- Authors: Hao Chen, Saining Xie, Ser-Nam Lim, Abhinav Shrivastava,
- Abstract summary: We introduce NeRV-Enc, a transformer-based hyper-network for fast encoding; and NeRV-Dec, a parallel decoder for efficient video loading.
NeRV-Enc achieves an impressive speed-up of $mathbf104times$ by eliminating gradient-based optimization.
NeRV-Dec simplifies video decoding, outperforming conventional codecs with a loading speed $mathbf11times$ faster.
- Score: 88.43612845776265
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the abundant availability and content richness for video data, its high-dimensionality poses challenges for video research. Recent advancements have explored the implicit representation for videos using neural networks, demonstrating strong performance in applications such as video compression and enhancement. However, the prolonged encoding time remains a persistent challenge for video Implicit Neural Representations (INRs). In this paper, we focus on improving the speed of video encoding and decoding within implicit representations. We introduce two key components: NeRV-Enc, a transformer-based hyper-network for fast encoding; and NeRV-Dec, a parallel decoder for efficient video loading. NeRV-Enc achieves an impressive speed-up of $\mathbf{10^4\times}$ by eliminating gradient-based optimization. Meanwhile, NeRV-Dec simplifies video decoding, outperforming conventional codecs with a loading speed $\mathbf{11\times}$ faster, and surpassing RAM loading with pre-decoded videos ($\mathbf{2.5\times}$ faster while being $\mathbf{65\times}$ smaller in size).
Related papers
- Binarized Low-light Raw Video Enhancement [49.65466843856074]
Deep neural networks have achieved excellent performance on low-light raw video enhancement.
In this paper, we explore the feasibility of applying the extremely compact binary neural network (BNN) to low-light raw video enhancement.
arXiv Detail & Related papers (2024-03-29T02:55:07Z) - HNeRV: A Hybrid Neural Representation for Videos [56.492309149698606]
Implicit neural representations store videos as neural networks.
We propose a Hybrid Neural Representation for Videos (HNeRV)
With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks.
arXiv Detail & Related papers (2023-04-05T17:55:04Z) - Towards Scalable Neural Representation for Diverse Videos [68.73612099741956]
Implicit neural representations (INR) have gained increasing attention in representing 3D scenes and images.
Existing INR-based methods are limited to encoding a handful of short videos with redundant visual content.
This paper focuses on developing neural representations for encoding long and/or a large number of videos with diverse visual content.
arXiv Detail & Related papers (2023-03-24T16:32:19Z) - FFNeRV: Flow-Guided Frame-Wise Neural Representations for Videos [5.958701846880935]
We propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos.
With model compression techniques, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
arXiv Detail & Related papers (2022-12-23T12:51:42Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
We show how to train neural representations with learnable positional features (NVP) that effectively amortize a video as latent codes.
We demonstrate the superiority of NVP on the popular UVG benchmark; compared with prior arts, NVP not only trains 2 times faster (less than 5 minutes) but also exceeds their encoding quality as 34.07rightarrow$34.57 (measured with the PSNR metric)
arXiv Detail & Related papers (2022-10-13T08:15:08Z) - Compressed Vision for Efficient Video Understanding [83.97689018324732]
We propose a framework enabling research on hour-long videos with the same hardware that can now process second-long videos.
We replace standard video compression, e.g. JPEG, with neural compression and show that we can directly feed compressed videos as inputs to regular video networks.
arXiv Detail & Related papers (2022-10-06T15:35:49Z) - Block Modulating Video Compression: An Ultra Low Complexity Image Compression Encoder for Resource Limited Platforms [35.76050232152349]
An ultra low-cost image Modulating Video Compression (BMVC) is proposed to be implemented on mobile platforms with low consumption of power and computation resources.
Two types of BMVC decoders, implemented by deep neural networks, are presented.
arXiv Detail & Related papers (2022-05-07T16:20:09Z) - NeRV: Neural Representations for Videos [36.00198388959609]
We propose a novel neural representation for videos (NeRV) which encodes videos in neural networks.
NeRV is simply fitting a neural network to video frames and decoding process is a simple feedforward operation.
With such a representation, we can treat videos as neural networks, simplifying several video-related tasks.
arXiv Detail & Related papers (2021-10-26T17:56:23Z) - Efficient Video Compression via Content-Adaptive Super-Resolution [11.6624528293976]
Video compression is a critical component of Internet video delivery.
Recent work has shown that deep learning techniques can rival or outperform human algorithms.
This paper presents a new approach that augments a recent deep learning-based video compression scheme.
arXiv Detail & Related papers (2021-04-06T07:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.