Binarized Low-light Raw Video Enhancement
- URL: http://arxiv.org/abs/2403.19944v1
- Date: Fri, 29 Mar 2024 02:55:07 GMT
- Title: Binarized Low-light Raw Video Enhancement
- Authors: Gengchen Zhang, Yulun Zhang, Xin Yuan, Ying Fu,
- Abstract summary: Deep neural networks have achieved excellent performance on low-light raw video enhancement.
In this paper, we explore the feasibility of applying the extremely compact binary neural network (BNN) to low-light raw video enhancement.
- Score: 49.65466843856074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, deep neural networks have achieved excellent performance on low-light raw video enhancement. However, they often come with high computational complexity and large memory costs, which hinder their applications on resource-limited devices. In this paper, we explore the feasibility of applying the extremely compact binary neural network (BNN) to low-light raw video enhancement. Nevertheless, there are two main issues with binarizing video enhancement models. One is how to fuse the temporal information to improve low-light denoising without complex modules. The other is how to narrow the performance gap between binary convolutions with the full precision ones. To address the first issue, we introduce a spatial-temporal shift operation, which is easy-to-binarize and effective. The temporal shift efficiently aggregates the features of neighbor frames and the spatial shift handles the misalignment caused by the large motion in videos. For the second issue, we present a distribution-aware binary convolution, which captures the distribution characteristics of real-valued input and incorporates them into plain binary convolutions to alleviate the degradation in performance. Extensive quantitative and qualitative experiments have shown our high-efficiency binarized low-light raw video enhancement method can attain a promising performance.
Related papers
- SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
We propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation.
SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead.
arXiv Detail & Related papers (2024-10-28T07:13:25Z) - BVI-RLV: A Fully Registered Dataset and Benchmarks for Low-Light Video Enhancement [56.97766265018334]
This paper introduces a low-light video dataset, consisting of 40 scenes with various motion scenarios under two distinct low-lighting conditions.
We provide fully registered ground truth data captured in normal light using a programmable motorized dolly and refine it via an image-based approach for pixel-wise frame alignment across different light levels.
Our experimental results demonstrate the significance of fully registered video pairs for low-light video enhancement (LLVE) and the comprehensive evaluation shows that the models trained with our dataset outperform those trained with the existing datasets.
arXiv Detail & Related papers (2024-07-03T22:41:49Z) - Low-Latency Neural Stereo Streaming [6.49558286032794]
Low-Latency neural for Stereo video Streaming (LLSS) is a novel parallel stereo video coding method designed for low-latency stereo video streaming.
LLSS processes left and right views in parallel, minimizing latency; all while substantially improving R-D performance compared to both existing neural and conventional codecs.
arXiv Detail & Related papers (2024-03-26T17:11:51Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - Neuromorphic Synergy for Video Binarization [54.195375576583864]
Bimodal objects serve as a visual form to embed information that can be easily recognized by vision systems.
Neuromorphic cameras offer new capabilities for alleviating motion blur, but it is non-trivial to first de-blur and then binarize the images in a real-time manner.
We propose an event-based binary reconstruction method that leverages the prior knowledge of the bimodal target's properties to perform inference independently in both event space and image space.
We also develop an efficient integration method to propagate this binary image to high frame rate binary video.
arXiv Detail & Related papers (2024-02-20T01:43:51Z) - FastLLVE: Real-Time Low-Light Video Enhancement with Intensity-Aware
Lookup Table [21.77469059123589]
We propose an efficient pipeline named FastLLVE to maintain inter-frame brightness consistency effectively.
FastLLVE can process 1,080p videos at $mathit50+$ Frames Per Second (FPS), which is $mathit2 times$ faster than CNN-based methods in inference time.
arXiv Detail & Related papers (2023-08-13T11:54:14Z) - ReBotNet: Fast Real-time Video Enhancement [59.08038313427057]
Most restoration networks are slow, have high computational bottleneck, and can't be used for real-time video enhancement.
In this work, we design an efficient and fast framework to perform real-time enhancement for practical use-cases like live video calls and video streams.
To evaluate our method, we emulate two new datasets that real-world video call and streaming scenarios, and show extensive results on multiple datasets where ReBotNet outperforms existing approaches with lower computations, reduced memory requirements, and faster inference time.
arXiv Detail & Related papers (2023-03-23T17:58:05Z) - NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition [89.84188594758588]
A novel Non-saliency Suppression Network (NSNet) is proposed to suppress the responses of non-salient frames.
NSNet achieves the state-of-the-art accuracy-efficiency trade-off and presents a significantly faster (2.44.3x) practical inference speed than state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T09:41:22Z) - Investigating Tradeoffs in Real-World Video Super-Resolution [90.81396836308085]
Real-world video super-resolution (VSR) models are often trained with diverse degradations to improve generalizability.
To alleviate the first tradeoff, we propose a degradation scheme that reduces up to 40% of training time without sacrificing performance.
To facilitate fair comparisons, we propose the new VideoLQ dataset, which contains a large variety of real-world low-quality video sequences.
arXiv Detail & Related papers (2021-11-24T18:58:21Z) - Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent
Neural Network [14.796204921975733]
Dual-view snapshot compressive imaging (SCI) aims to capture videos from two field-of-views (FoVs) in a single snapshot.
It is challenging for existing model-based decoding algorithms to reconstruct each individual scene.
We propose an optical flow-aided recurrent neural network for dual video SCI systems, which provides high-quality decoding in seconds.
arXiv Detail & Related papers (2021-09-11T14:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.