Introducing SDICE: An Index for Assessing Diversity of Synthetic Medical Datasets
- URL: http://arxiv.org/abs/2409.19436v1
- Date: Sat, 28 Sep 2024 18:47:17 GMT
- Title: Introducing SDICE: An Index for Assessing Diversity of Synthetic Medical Datasets
- Authors: Mohammed Talha Alam, Raza Imam, Mohammad Areeb Qazi, Asim Ukaye, Karthik Nandakumar,
- Abstract summary: We propose the SDICE index, which is based on the characterization of similarity distributions induced by a contrastive encoder.
Given a synthetic dataset and a reference dataset of real images, the SDICE index measures the distance between the similarity score distributions of original and synthetic images.
Experiments conducted on the MIMIC-chest X-ray and ImageNet datasets demonstrate the effectiveness of SDICE index.
- Score: 3.9539878659683363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in generative modeling are pushing the state-of-the-art in synthetic medical image generation. These synthetic images can serve as an effective data augmentation method to aid the development of more accurate machine learning models for medical image analysis. While the fidelity of these synthetic images has progressively increased, the diversity of these images is an understudied phenomenon. In this work, we propose the SDICE index, which is based on the characterization of similarity distributions induced by a contrastive encoder. Given a synthetic dataset and a reference dataset of real images, the SDICE index measures the distance between the similarity score distributions of original and synthetic images, where the similarity scores are estimated using a pre-trained contrastive encoder. This distance is then normalized using an exponential function to provide a consistent metric that can be easily compared across domains. Experiments conducted on the MIMIC-chest X-ray and ImageNet datasets demonstrate the effectiveness of SDICE index in assessing synthetic medical dataset diversity.
Related papers
- Transesophageal Echocardiography Generation using Anatomical Models [0.5679566039341877]
We develop a pipeline to generate synthetic TEE images and corresponding semantic labels.
For the pipeline's unpaired image-to-image (I2I) translation section, we explore two generative methods.
We achieve a dice score improvement of up to 10% when we augment datasets with our synthetic images.
arXiv Detail & Related papers (2024-10-09T11:20:28Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
Two main challenges for these approaches are the accurate prediction of contrast enhancement and the synthesis of realistic images.
We address both challenges by utilizing the contrast signal encoded in the subtraction images of pre-contrast and post-contrast image pairs.
We demonstrate the effectiveness of our approach on synthetic and real datasets using various scanners, field strengths, and contrast agents.
arXiv Detail & Related papers (2024-03-06T08:35:29Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - Bridging the Gap between Synthetic and Authentic Images for Multimodal
Machine Translation [51.37092275604371]
Multimodal machine translation (MMT) simultaneously takes the source sentence and a relevant image as input for translation.
Recent studies suggest utilizing powerful text-to-image generation models to provide image inputs.
However, synthetic images generated by these models often follow different distributions compared to authentic images.
arXiv Detail & Related papers (2023-10-20T09:06:30Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
We develop controllable diffusion models for medical image synthesis, called EMIT-Diff.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
In our approach, we ensure that the synthesized samples adhere to medically relevant constraints.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - A Self-attention Guided Multi-scale Gradient GAN for Diversified X-ray
Image Synthesis [0.6308539010172307]
Generative Adversarial Networks (GANs) are utilized to address the data limitation problem via the generation of synthetic images.
Training challenges such as mode collapse, non-convergence, and instability degrade a GAN's performance in synthesizing diversified and high-quality images.
This work proposes an attention-guided multi-scale gradient GAN architecture to model the relationship between long-range dependencies of biomedical image features.
arXiv Detail & Related papers (2022-10-09T13:17:17Z) - Evaluating the Quality and Diversity of DCGAN-based Generatively
Synthesized Diabetic Retinopathy Imagery [0.07499722271664144]
Publicly available diabetic retinopathy (DR) datasets are imbalanced, containing limited numbers of images with DR.
The imbalance can be addressed using Geneversarative Adrial Networks (GANs) to augment the datasets with synthetic images.
To evaluate the quality and diversity of synthetic images, several evaluation metrics, such as Multi-Scale Structural Similarity Index (MS-SSIM), Cosine Distance (CD), and Fr't Inception Distance (FID) are used.
arXiv Detail & Related papers (2022-08-10T23:50:01Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.