論文の概要: Accelerating Malware Classification: A Vision Transformer Solution
- arxiv url: http://arxiv.org/abs/2409.19461v1
- Date: Sat, 28 Sep 2024 21:34:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 23:07:28.755143
- Title: Accelerating Malware Classification: A Vision Transformer Solution
- Title(参考訳): 高速なマルウェア分類:ビジョントランスフォーマーソリューション
- Authors: Shrey Bavishi, Shrey Modi,
- Abstract要約: 主な課題は、密接に関連するマルウェアファミリーを正確に分類することである。
本稿では,マルウェア検出と分類の最先端結果を生成する新しいアーキテクチャLeViT-MCを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The escalating frequency and scale of recent malware attacks underscore the urgent need for swift and precise malware classification in the ever-evolving cybersecurity landscape. Key challenges include accurately categorizing closely related malware families. To tackle this evolving threat landscape, this paper proposes a novel architecture LeViT-MC which produces state-of-the-art results in malware detection and classification. LeViT-MC leverages a vision transformer-based architecture, an image-based visualization approach, and advanced transfer learning techniques. Experimental results on multi-class malware classification using the MaleVis dataset indicate LeViT-MC's significant advantage over existing models. This study underscores the critical importance of combining image-based and transfer learning techniques, with vision transformers at the forefront of the ongoing battle against evolving cyber threats. We propose a novel architecture LeViT-MC which not only achieves state of the art results on image classification but is also more time efficient.
- Abstract(参考訳): 最近のマルウェア攻撃の頻度と規模は、進化を続けるサイバーセキュリティの状況において、急激で正確なマルウェア分類の必要性を浮き彫りにしている。
主な課題は、密接に関連するマルウェアファミリーを正確に分類することである。
この進化する脅威に対処するために,マルウェアの検出と分類に最先端の成果をもたらす新しいアーキテクチャLeViT-MCを提案する。
LeViT-MCは、ビジョントランスフォーマーベースのアーキテクチャ、イメージベースの可視化アプローチ、高度なトランスファー学習技術を活用している。
MaleVisデータセットを用いたマルチクラスマルウェア分類の実験結果は、既存のモデルに対するLeViT-MCの顕著な優位性を示している。
本研究は、進化するサイバー脅威との戦いの最前線で、画像ベースと移動学習技術を組み合わせることの重要性を強調した。
本稿では,画像分類の最先端化だけでなく,時間効率も向上した新しいアーキテクチャLeViT-MCを提案する。
関連論文リスト
- Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - A Comprehensive Study of Vision Transformers in Image Classification
Tasks [0.46040036610482665]
画像分類のための視覚変換器に関する既存の論文を包括的に調査する。
まず,モデルの設計に影響を及ぼす人気画像分類データセットを紹介する。
まず、視覚タスクに注意機構を適応させようとする初期の試みから始まる、時系列順の視覚トランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-12-02T21:38:16Z) - High-resolution Image-based Malware Classification using Multiple
Instance Learning [0.0]
本稿では,高解像度グレースケール画像と複数インスタンス学習を用いて,マルウェアを家族に分類する方法を提案する。
この実装はMicrosoft Malware Classificationデータセットで評価され、反対に拡大されたサンプルに対して最大96.6%のアキュラシーを達成している。
論文 参考訳(メタデータ) (2023-11-21T18:11:26Z) - Adversarial Prompt Tuning for Vision-Language Models [86.5543597406173]
AdvPT(Adversarial Prompt Tuning)は、視覚言語モデル(VLM)における画像エンコーダの対向ロバスト性を高める技術である。
我々は,AdvPTが白箱攻撃や黒箱攻撃に対する抵抗性を向上し,既存の画像処理による防御技術と組み合わせることで相乗効果を示すことを示した。
論文 参考訳(メタデータ) (2023-11-19T07:47:43Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
本稿では、視覚変換器(ViT)アーキテクチャに基づくマルウェア検出のための自己超越型ディープラーニングモデルであるSHERLOCKを提案する。
提案手法は, マクロF1スコアが.497, 491で, マルチクラスマルウェア分類における最先端技術よりも優れている。
論文 参考訳(メタデータ) (2022-08-15T07:49:58Z) - Self-Ensembling Vision Transformer (SEViT) for Robust Medical Image
Classification [4.843654097048771]
ビジョントランスフォーマー(ViT)は、医療画像における様々なコンピュータビジョンタスクのために、畳み込みニューラルネットワーク(CNN)を置き換えるために競合している。
近年の研究では、ViTsはそのような攻撃の影響を受けやすく、攻撃下での大幅な性能劣化が報告されている。
本稿では,対戦型攻撃の存在下でのViTの堅牢性を高めるための,新たな自己認識手法を提案する。
論文 参考訳(メタデータ) (2022-08-04T19:02:24Z) - Generative Adversarial Networks and Image-Based Malware Classification [7.803471587734353]
多クラス分類のためのGAN(Generative Adversarial Networks)に焦点を当てる。
我々は、AC-GAN判別器が、他の機械学習技術と一般的に競合していることを発見した。
また,画像に基づくマルウェア検出に対する敵対攻撃に対するGAN生成モデルの有用性についても検討した。
論文 参考訳(メタデータ) (2022-06-08T20:59:47Z) - MAT: Mask-Aware Transformer for Large Hole Image Inpainting [79.67039090195527]
本稿では, 変圧器と畳み込みの利点を統一する, 大穴塗装の新しいモデルを提案する。
実験では、複数のベンチマークデータセット上で、新しいモデルの最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-03-29T06:36:17Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
注意の少ないvIsion Transformerは、畳み込み、完全接続層、自己アテンションが、画像パッチシーケンスを処理するためにほぼ同等な数学的表現を持つという事実に基づいている。
提案したLITは、画像分類、オブジェクト検出、インスタンス分割を含む画像認識タスクにおいて有望な性能を達成する。
論文 参考訳(メタデータ) (2021-05-29T05:26:07Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z) - CrossTransformers: spatially-aware few-shot transfer [92.33252608837947]
非常に少ないデータを持つ新しいタスクを考えると、現代の視覚システムは驚くほど急速に低下する。
現代の視覚システムを支えるニューラルネットワーク表現が、どのようにして監督の崩壊にさらされているかを示す。
そこで我々は,伝達を良くする汎用的な機能を促進するために,自己指導型学習を提案する。
論文 参考訳(メタデータ) (2020-07-22T15:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。