論文の概要: Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning
- arxiv url: http://arxiv.org/abs/2409.19509v1
- Date: Sun, 29 Sep 2024 01:48:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:05:46.968509
- Title: Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning
- Title(参考訳): 不均一性を考慮した階層型エッジ学習のための資源配分とトポロジー設計
- Authors: Zhidong Gao, Yu Zhang, Yanmin Gong, Yuanxiong Guo,
- Abstract要約: Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgはこれらのデバイスに重い通信負荷を課す。
エッジデバイスをエッジサーバに接続し,エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムを提案する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
- 参考スコア(独自算出の注目度): 9.900317349372383
- License:
- Abstract: Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices. Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices. To mitigate this issue, Hierarchical Federated Edge Learning (HFEL) has been proposed, leveraging edge servers as intermediaries for model aggregation. Despite its effectiveness, HFEL encounters challenges such as a slow convergence rate and high resource consumption, particularly in the presence of system and data heterogeneity. However, existing works are mainly focused on improving training efficiency for traditional FL, leaving the efficiency of HFEL largely unexplored. In this paper, we consider a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls. Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design. Specifically, we formulate an optimization problem to minimize the total training latency by allocating the computation and communication resources, as well as adjusting the P2P connections. To ensure convergence under dynamic topologies, we analyze the convergence error bound and introduce a model consensus constraint into the optimization problem. The proposed problem is then decomposed into several subproblems, enabling us to alternatively solve it online. Our method facilitates the efficient implementation of large-scale FL at edge networks under data and system heterogeneity. Comprehensive experiment evaluation on benchmark datasets validates the effectiveness of the proposed method, demonstrating significant reductions in training latency while maintaining the model accuracy compared to various baselines.
- Abstract(参考訳): Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgは、これらのデバイスに大量の通信負荷をかける。
この問題を軽減するため、階層型フェデレーションエッジラーニング(HFEL)が提案され、エッジサーバをモデルアグリゲーションの仲介手段として活用している。
その効果にもかかわらず、HFELは、特にシステムやデータの不均一性の存在下で、収束速度の緩やかさや資源消費などの課題に直面している。
しかし、既存の研究は主に従来のFLの訓練効率の改善に重点を置いており、HFELの効率は未調査のままである。
本稿では、エッジデバイスをエッジサーバに接続し、エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムについて考察する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
具体的には、計算と通信資源を割り当て、P2P接続を調整することにより、トレーニング全体の遅延を最小化する最適化問題を定式化する。
動的トポロジ下で収束を確保するため,収束誤差を解析し,最適化問題にモデルコンセンサス制約を導入する。
提案した問題はいくつかのサブプロブレムに分解され、代わりにオンラインで解決することができる。
本手法は,エッジネットワークにおけるデータとシステムの不均一性を考慮した大規模FLの効率的な実装を容易にする。
ベンチマークデータセットの総合的な実験評価は,提案手法の有効性を検証し,各種ベースラインと比較してモデルの精度を維持しつつ,トレーニングの遅延を著しく低減することを示した。
関連論文リスト
- Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Accelerating Federated Edge Learning via Topology Optimization [41.830942005165625]
フェデレートエッジラーニング(FEEL)は、プライバシー保護の分散ラーニングを実現するための有望なパラダイムとして考えられている。
ストラグラー装置の存在により、過度の学習時間を消費する。
フェデレーション学習における不均一性問題に対処するために,新しいトポロジ最適化フェデレーション・エッジ・ラーニング(TOFEL)手法を提案する。
論文 参考訳(メタデータ) (2022-04-01T14:49:55Z) - Over-the-Air Federated Learning via Second-Order Optimization [37.594140209854906]
フェデレートラーニング(FL)は、無線ネットワーク上でのタスク指向のデータトラフィックを、限られた無線リソースによって引き起こす可能性がある。
本稿では,通信ラウンドを同時に削減し,低レイテンシなグローバルモデルアグリゲーションを実現するために,空対2次フェデレーション最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-29T12:39:23Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
フェデレートラーニング(Federated Learning, FL)は、複数のノードが協調してディープラーニングモデルをトレーニングできる分散ラーニング方法論である。
本稿では,IoTヘテロジニアスシステムにおける階層FLの可能性について検討する。
複数のエッジノード上でのユーザ割り当てとリソース割り当てに最適化されたソリューションを提案する。
論文 参考訳(メタデータ) (2021-07-14T08:32:39Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
我々は,デバイス選択,無線トランシーバ設計,RIS構成を協調的に最適化する統一的なコミュニケーション学習最適化問題を開発した。
数値実験により,提案手法は最先端の手法と比較して,学習精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-11-20T08:54:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。