An evolutionary approach for discovering non-Gaussian stochastic dynamical systems based on nonlocal Kramers-Moyal formulas
- URL: http://arxiv.org/abs/2409.19534v1
- Date: Sun, 29 Sep 2024 03:35:01 GMT
- Title: An evolutionary approach for discovering non-Gaussian stochastic dynamical systems based on nonlocal Kramers-Moyal formulas
- Authors: Yang Li, Shengyuan Xu, Jinqiao Duan,
- Abstract summary: This research endeavors to develop an evolutionary symbol sparse regression (ESSR) approach to extract non-Gaussian dynamical systems from sample path data.
The efficacy and capabilities of this approach are showcased through its application to several illustrative models.
- Score: 19.588387760309484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovering explicit governing equations of stochastic dynamical systems with both (Gaussian) Brownian noise and (non-Gaussian) L\'evy noise from data is chanllenging due to possible intricate functional forms and the inherent complexity of L\'evy motion. This present research endeavors to develop an evolutionary symbol sparse regression (ESSR) approach to extract non-Gaussian stochastic dynamical systems from sample path data, based on nonlocal Kramers-Moyal formulas, genetic programming, and sparse regression. More specifically, the genetic programming is employed to generate a diverse array of candidate functions, the sparse regression technique aims at learning the coefficients associated with these candidates, and the nonlocal Kramers-Moyal formulas serve as the foundation for constructing the fitness measure in genetic programming and the loss function in sparse regression. The efficacy and capabilities of this approach are showcased through its application to several illustrative models. This approach stands out as a potent instrument for deciphering non-Gaussian stochastic dynamics from available datasets, indicating a wide range of applications across different fields.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Weak Collocation Regression for Inferring Stochastic Dynamics with
L\'{e}vy Noise [8.15076267771005]
We propose a weak form of the Fokker-Planck (FP) equation for extracting dynamics with L'evy noise.
Our approach can simultaneously distinguish mixed noise types, even in multi-dimensional problems.
arXiv Detail & Related papers (2024-03-13T06:54:38Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Weak Collocation Regression method: fast reveal hidden stochastic
dynamics from high-dimensional aggregate data [10.195461345970541]
We show an approach to effectively modeling the dynamics of the data without trajectories based on the weak form of the Fokker-Planck (FP) equation.
We name the method with the Weak Collocation Regression (WCR) method for its three key components: weak form, collocation of Gaussian kernels, and regression.
arXiv Detail & Related papers (2022-09-06T16:29:49Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Extracting stochastic dynamical systems with $\alpha$-stable L\'evy
noise from data [14.230182518492311]
We propose a data-driven method to extract systems with $alpha$-stable L'evy noise from short burst data.
More specifically, we first estimate the L'evy jump measure and noise intensity.
Then we approximate the drift coefficient by combining nonlocal Kramers-Moyal formulas with normalizing flows.
arXiv Detail & Related papers (2021-09-30T06:57:42Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
We infer equations with non-Gaussian L'evy noise from available data to reasonably predict dynamical behaviors.
We establish a theoretical framework and design a numerical algorithm to compute the asymmetric L'evy jump measure, drift and diffusion.
This method will become an effective tool in discovering the governing laws from available data sets and in understanding the mechanisms underlying complex random phenomena.
arXiv Detail & Related papers (2021-07-21T14:50:36Z) - A Data-Driven Approach for Discovering Stochastic Dynamical Systems with
Non-Gaussian Levy Noise [5.17900889163564]
We develop a new data-driven approach to extract governing laws from noisy data sets.
First, we establish a feasible theoretical framework, by expressing the drift coefficient, diffusion coefficient and jump measure.
We then design a numerical algorithm to compute the drift, diffusion coefficient and jump measure, and thus extract a governing equation with Gaussian and non-Gaussian noise.
arXiv Detail & Related papers (2020-05-07T21:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.