Tri-Cam: Practical Eye Gaze Tracking via Camera Network
- URL: http://arxiv.org/abs/2409.19554v3
- Date: Thu, 17 Oct 2024 05:34:55 GMT
- Title: Tri-Cam: Practical Eye Gaze Tracking via Camera Network
- Authors: Sikai Yang, Wan Du,
- Abstract summary: We introduce Tri-Cam, a practical deep learning-based gaze tracking system using three affordable RGB webcams.
It features a split network structure for efficient training, as well as designated network designs to handle the separated gaze tracking tasks.
We evaluate Tri-Cam against Tobii, the state-of-the-art commercial eye tracker, achieving comparable accuracy, while supporting a wider free movement area.
- Score: 1.642094639107215
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As human eyes serve as conduits of rich information, unveiling emotions, intentions, and even aspects of an individual's health and overall well-being, gaze tracking also enables various human-computer interaction applications, as well as insights in psychological and medical research. However, existing gaze tracking solutions fall short at handling free user movement, and also require laborious user effort in system calibration. We introduce Tri-Cam, a practical deep learning-based gaze tracking system using three affordable RGB webcams. It features a split network structure for efficient training, as well as designated network designs to handle the separated gaze tracking tasks. Tri-Cam is also equipped with an implicit calibration module, which makes use of mouse click opportunities to reduce calibration overhead on the user's end. We evaluate Tri-Cam against Tobii, the state-of-the-art commercial eye tracker, achieving comparable accuracy, while supporting a wider free movement area. In conclusion, Tri-Cam provides a user-friendly, affordable, and robust gaze tracking solution that could practically enable various applications.
Related papers
- ChatCam: Empowering Camera Control through Conversational AI [67.31920821192323]
ChatCam is a system that navigates camera movements through conversations with users.
To achieve this, we propose CineGPT, a GPT-based autoregressive model for text-conditioned camera trajectory generation.
We also develop an Anchor Determinator to ensure precise camera trajectory placement.
arXiv Detail & Related papers (2024-09-25T20:13:41Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
Finding obstacle-free paths in unknown environments is a big navigation issue for visually impaired people and autonomous robots.
New devices based on computer vision systems can help impaired people to overcome the difficulties of navigating in unknown environments in safe conditions.
In this work it is proposed a combination of sensors and algorithms that can lead to the building of a navigation system for visually impaired people.
arXiv Detail & Related papers (2024-01-30T14:38:43Z) - TripletTrack: 3D Object Tracking using Triplet Embeddings and LSTM [0.0]
3D object tracking is a critical task in autonomous driving systems.
In this paper we investigate the use of triplet embeddings in combination with motion representations for 3D object tracking.
arXiv Detail & Related papers (2022-10-28T15:23:50Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement
Learning [91.58711082348293]
Reinforcement learning from online user feedback on the system's performance presents a natural solution to this problem.
This approach tends to require a large amount of human-in-the-loop training data, especially when feedback is sparse.
We propose a hierarchical solution that learns efficiently from sparse user feedback.
arXiv Detail & Related papers (2022-02-05T02:01:19Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
This work aims to exploit the use of sparse visual observations to achieve perceptual locomotion over a range of commonly seen bumps, ramps, and stairs in human-centred environments.
We first formulate the selection of minimal visual input that can represent the uneven surfaces of interest, and propose a learning framework that integrates such exteroceptive and proprioceptive data.
We validate the learned policy in tasks that require omnidirectional walking over flat ground and forward locomotion over terrains with obstacles, showing a high success rate.
arXiv Detail & Related papers (2021-09-28T20:25:10Z) - C^3Net: End-to-End deep learning for efficient real-time visual active
camera control [4.09920839425892]
The need for automated real-time visual systems in applications such as smart camera surveillance, smart environments, and drones necessitates the improvement of methods for visual active monitoring and control.
In this paper a deep Convolutional Camera Controller Neural Network is proposed to go directly from visual information to camera movement.
It is trained end-to-end without bounding box annotations to control a camera and follow multiple targets from raw pixel values.
arXiv Detail & Related papers (2021-07-28T09:31:46Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Towards Hardware-Agnostic Gaze-Trackers [0.5512295869673146]
We present a deep neural network architecture as an appearance-based method for constrained gaze-tracking.
Our system achieved an error of 1.8073cm on GazeCapture dataset without any calibration or device specific fine-tuning.
arXiv Detail & Related papers (2020-10-11T00:53:57Z) - YOLOpeds: Efficient Real-Time Single-Shot Pedestrian Detection for Smart
Camera Applications [2.588973722689844]
This work addresses the challenge of achieving a good trade-off between accuracy and speed for efficient deployment of deep-learning-based pedestrian detection in smart camera applications.
A computationally efficient architecture is introduced based on separable convolutions and proposes integrating dense connections across layers and multi-scale feature fusion.
Overall, YOLOpeds provides real-time sustained operation of over 30 frames per second with detection rates in the range of 86% outperforming existing deep learning models.
arXiv Detail & Related papers (2020-07-27T09:50:11Z) - Three-dimensional Human Tracking of a Mobile Robot by Fusion of Tracking
Results of Two Cameras [0.860255319568951]
OpenPose is used for human detection.
A new stereo vision framework is proposed to cope with the problems.
The effectiveness of the proposed framework and the method is verified through target-tracking experiments.
arXiv Detail & Related papers (2020-07-03T06:46:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.