ChatCam: Empowering Camera Control through Conversational AI
- URL: http://arxiv.org/abs/2409.17331v1
- Date: Wed, 25 Sep 2024 20:13:41 GMT
- Title: ChatCam: Empowering Camera Control through Conversational AI
- Authors: Xinhang Liu, Yu-Wing Tai, Chi-Keung Tang,
- Abstract summary: ChatCam is a system that navigates camera movements through conversations with users.
To achieve this, we propose CineGPT, a GPT-based autoregressive model for text-conditioned camera trajectory generation.
We also develop an Anchor Determinator to ensure precise camera trajectory placement.
- Score: 67.31920821192323
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cinematographers adeptly capture the essence of the world, crafting compelling visual narratives through intricate camera movements. Witnessing the strides made by large language models in perceiving and interacting with the 3D world, this study explores their capability to control cameras with human language guidance. We introduce ChatCam, a system that navigates camera movements through conversations with users, mimicking a professional cinematographer's workflow. To achieve this, we propose CineGPT, a GPT-based autoregressive model for text-conditioned camera trajectory generation. We also develop an Anchor Determinator to ensure precise camera trajectory placement. ChatCam understands user requests and employs our proposed tools to generate trajectories, which can be used to render high-quality video footage on radiance field representations. Our experiments, including comparisons to state-of-the-art approaches and user studies, demonstrate our approach's ability to interpret and execute complex instructions for camera operation, showing promising applications in real-world production settings.
Related papers
- CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion [29.320516135326546]
CinePreGen is a visual previsualization system enhanced with engine-powered diffusion.
It features a novel camera and storyboard interface that offers dynamic control, from global to local camera adjustments.
arXiv Detail & Related papers (2024-08-30T17:16:18Z) - VD3D: Taming Large Video Diffusion Transformers for 3D Camera Control [74.5434726968562]
We tame transformers video for 3D camera control using a ControlNet-like conditioning mechanism based on Plucker coordinates.
Our work is the first to enable camera control for transformer-based video diffusion models.
arXiv Detail & Related papers (2024-07-17T17:59:05Z) - E.T. the Exceptional Trajectories: Text-to-camera-trajectory generation with character awareness [9.79206550593288]
We propose a dataset called the Exceptional Trajectories (E.T.) with camera trajectories along with character information and textual captions.
To our knowledge, this is the first dataset of its kind.
To show the potential applications of the E.T. dataset, we propose a diffusion-based approach, named DIRECTOR.
We train on the E.T. dataset CLaTr, a Contrastive Language-Trajectory embedding for evaluation metrics.
arXiv Detail & Related papers (2024-07-01T17:58:02Z) - Image Conductor: Precision Control for Interactive Video Synthesis [90.2353794019393]
Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements.
Image Conductor is a method for precise control of camera transitions and object movements to generate video assets from a single image.
arXiv Detail & Related papers (2024-06-21T17:55:05Z) - CamCo: Camera-Controllable 3D-Consistent Image-to-Video Generation [117.16677556874278]
We introduce CamCo, which allows fine-grained Camera pose Control for image-to-video generation.
To enhance 3D consistency in the videos produced, we integrate an epipolar attention module in each attention block.
Our experiments show that CamCo significantly improves 3D consistency and camera control capabilities compared to previous models.
arXiv Detail & Related papers (2024-06-04T17:27:19Z) - Generative Camera Dolly: Extreme Monocular Dynamic Novel View Synthesis [43.02778060969546]
We propose a controllable monocular dynamic view synthesis pipeline.
Our model does not require depth as input, and does not explicitly model 3D scene geometry.
We believe our framework can potentially unlock powerful applications in rich dynamic scene understanding, perception for robotics, and interactive 3D video viewing experiences for virtual reality.
arXiv Detail & Related papers (2024-05-23T17:59:52Z) - CameraCtrl: Enabling Camera Control for Text-to-Video Generation [86.36135895375425]
Controllability plays a crucial role in video generation since it allows users to create desired content.
Existing models largely overlooked the precise control of camera pose that serves as a cinematic language.
We introduce CameraCtrl, enabling accurate camera pose control for text-to-video(T2V) models.
arXiv Detail & Related papers (2024-04-02T16:52:41Z) - Real-Time Neural Character Rendering with Pose-Guided Multiplane Images [75.62730144924566]
We propose pose-guided multiplane image (MPI) synthesis which can render an animatable character in real scenes with photorealistic quality.
We use a portable camera rig to capture the multi-view images along with the driving signal for the moving subject.
arXiv Detail & Related papers (2022-04-25T17:51:38Z) - Batteries, camera, action! Learning a semantic control space for
expressive robot cinematography [15.895161373307378]
We develop a data-driven framework that enables editing of complex camera positioning parameters in a semantic space.
First, we generate a database of video clips with a diverse range of shots in a photo-realistic simulator.
We use hundreds of participants in a crowd-sourcing framework to obtain scores for a set of semantic descriptors for each clip.
arXiv Detail & Related papers (2020-11-19T21:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.