論文の概要: Fully Aligned Network for Referring Image Segmentation
- arxiv url: http://arxiv.org/abs/2409.19569v1
- Date: Sun, 29 Sep 2024 06:13:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:04:20.035163
- Title: Fully Aligned Network for Referring Image Segmentation
- Title(参考訳): 画像分割参照のための完全アライメントネットワーク
- Authors: Yong Liu, Ruihao Xu, Yansong Tang,
- Abstract要約: 本稿では、与えられた言語記述に基づいて画像からオブジェクトをセグメント化するReferring Image Taskに焦点を当てる。
RISの重要な問題は、ターゲットオブジェクトを認識し、セグメント化するために、異なるモダリティ間のきめ細かいアライメントを達成することである。
本稿では,4つのモード間相互作用の原則に従うフルアラインド・ネットワーク(FAN)を提案する。
- 参考スコア(独自算出の注目度): 22.40918154209717
- License:
- Abstract: This paper focuses on the Referring Image Segmentation (RIS) task, which aims to segment objects from an image based on a given language description. The critical problem of RIS is achieving fine-grained alignment between different modalities to recognize and segment the target object. Recent advances using the attention mechanism for cross-modal interaction have achieved excellent progress. However, current methods tend to lack explicit principles of interaction design as guidelines, leading to inadequate cross-modal comprehension. Additionally, most previous works use a single-modal mask decoder for prediction, losing the advantage of full cross-modal alignment. To address these challenges, we present a Fully Aligned Network (FAN) that follows four cross-modal interaction principles. Under the guidance of reasonable rules, our FAN achieves state-of-the-art performance on the prevalent RIS benchmarks (RefCOCO, RefCOCO+, G-Ref) with a simple architecture.
- Abstract(参考訳): 本稿では、与えられた言語記述に基づいて画像からオブジェクトをセグメント化することを目的とした参照イメージセグメンテーション(RIS)タスクに焦点を当てる。
RISの重要な問題は、ターゲットオブジェクトを認識し、セグメント化するために、異なるモダリティ間のきめ細かいアライメントを達成することである。
近年,モーダル間相互作用におけるアテンション機構の進歩は大きな進歩を遂げている。
しかしながら、現在の手法は、ガイドラインとして相互作用設計の明確な原則を欠く傾向にあり、モダル間の理解が不十分になる。
さらに、以前のほとんどの作品では、予測に単一モードマスクデコーダを使用しており、完全なクロスモーダルアライメントの利点を失っている。
これらの課題に対処するために,4つのモード間相互作用の原則に従うフルアラインドネットワーク(FAN)を提案する。
合理的なルールのガイダンスにより、我々のFANは、一般的なRISベンチマーク(RefCOCO、RefCOCO+、G-Ref)の最先端のパフォーマンスをシンプルなアーキテクチャで達成する。
関連論文リスト
- Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Towards Generalizable Referring Image Segmentation via Target Prompt and
Visual Coherence [48.659338080020746]
Referring Image segmentation (RIS) は、自由なテキスト記述に基づいて画像条件でオブジェクトを分割することを目的としている。
本稿では,先述の2つのジレンマに対処することにより,一般化能力を大幅に向上させる新しいRISアプローチを提案する。
特に、制約のないテキストを扱うために、明示的で決定的なプロンプトで与えられた表現を増強し、統一された文脈での表現を補完することを提案する。
論文 参考訳(メタデータ) (2023-12-01T09:31:24Z) - CM-MaskSD: Cross-Modality Masked Self-Distillation for Referring Image
Segmentation [29.885991324519463]
本稿では,CM-MaskSD という新しいクロスモーダルマスク型自己蒸留フレームワークを提案する。
提案手法は,CLIPモデルから画像テキストセマンティックアライメントの伝達知識を継承し,きめ細かいパッチワード特徴アライメントを実現する。
我々のフレームワークはパラメータフリーに近い方法でモデル性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-05-19T07:17:27Z) - Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image
Person Retrieval [29.884153827619915]
IRRA:クロスモーダルImplicit Relation Reasoning and Aligning frameworkを提案する。
ローカルなビジュアルテキストトークン間の関係を学習し、グローバルな画像テキストマッチングを強化する。
提案手法は,3つの公開データセットすべてに対して,最先端の新たな結果を実現する。
論文 参考訳(メタデータ) (2023-03-22T12:11:59Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
少ないショットのセグメンテーションは、少数の濃密なラベル付けされたサンプルのみを与えられた、目に見えないクラスオブジェクトをセグメンテーションすることを目的としている。
分割・分散の精神において, 単純かつ多目的な枠組みを提案する。
提案手法は、DCP(disvision-and-conquer proxies)と呼ばれるもので、適切な信頼性のある情報の開発を可能にする。
論文 参考訳(メタデータ) (2022-04-21T06:21:14Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
航空画像のセグメンテーションにはいくつかの独特な課題があり、中でも最も重要なものは前景と背景のアンバランスにある。
本稿では,階層的なセグメンテーション手法を採用し,マルチスケール表現を適応的に活用するAdaptive Focus Framework (AF$)を提案する。
AF$は、広く使われている3つの航空ベンチマークの精度を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-18T10:14:45Z) - A Unified Architecture of Semantic Segmentation and Hierarchical
Generative Adversarial Networks for Expression Manipulation [52.911307452212256]
セマンティックセグメンテーションと階層的GANの統一アーキテクチャを開発する。
我々のフレームワークのユニークな利点は、将来的なセマンティックセグメンテーションネットワーク条件を生成モデルに渡すことである。
我々は,AffectNetとRaFDの2つの難解な表情翻訳ベンチマークとセマンティックセグメンテーションベンチマークであるCelebAMask-HQについて評価を行った。
論文 参考訳(メタデータ) (2021-12-08T22:06:31Z) - Two-stage Visual Cues Enhancement Network for Referring Image
Segmentation [89.49412325699537]
Referring Image (RIS)は、ある自然言語表現によって参照される画像から対象のオブジェクトをセグメント化することを目的としている。
本稿では,2段階のビジュアルキュー拡張ネットワーク(TV-Net)を考案し,この問題に対処する。
この2段階の強化により,提案するTV-Netは,自然言語表現と画像間のきめ細かいマッチング動作の学習において,より優れた性能を享受できる。
論文 参考訳(メタデータ) (2021-10-09T02:53:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。