The Devil is in the Sources! Knowledge Enhanced Cross-Domain Recommendation in an Information Bottleneck Perspective
- URL: http://arxiv.org/abs/2409.19574v1
- Date: Sun, 29 Sep 2024 06:30:44 GMT
- Title: The Devil is in the Sources! Knowledge Enhanced Cross-Domain Recommendation in an Information Bottleneck Perspective
- Authors: Binbin Hu, Weifan Wang, Hanshu Wang, Ziqi Liu, Bin Shen, Yong He, Jiawei Chen,
- Abstract summary: Cross-domain Recommendation (CDR) aims to alleviate the data sparsity and the cold-start problems in traditional recommender systems.
We propose a novel knowledge enhanced cross-domain recommendation framework named CoTrans.
- Score: 20.354832981118935
- License:
- Abstract: Cross-domain Recommendation (CDR) aims to alleviate the data sparsity and the cold-start problems in traditional recommender systems by leveraging knowledge from an informative source domain. However, previously proposed CDR models pursue an imprudent assumption that the entire information from the source domain is equally contributed to the target domain, neglecting the evil part that is completely irrelevant to users' intrinsic interest. To address this concern, in this paper, we propose a novel knowledge enhanced cross-domain recommendation framework named CoTrans, which remolds the core procedures of CDR models with: Compression on the knowledge from the source domain and Transfer of the purity to the target domain. Specifically, following the theory of Graph Information Bottleneck, CoTrans first compresses the source behaviors with the perception of information from the target domain. Then to preserve all the important information for the CDR task, the feedback signals from both domains are utilized to promote the effectiveness of the transfer procedure. Additionally, a knowledge-enhanced encoder is employed to narrow gaps caused by the non-overlapped items across separate domains. Comprehensive experiments on three widely used cross-domain datasets demonstrate that CoTrans significantly outperforms both single-domain and state-of-the-art cross-domain recommendation approaches.
Related papers
- Federated Graph Learning for Cross-Domain Recommendation [33.33321213257222]
Cross-domain recommendation (CDR) offers a promising solution to the data sparsity problem by enabling knowledge transfer across source and target domains.
We propose FedGCDR, a novel graph learning framework that securely and effectively leverages positive knowledge from multiple source domains.
We conduct extensive experiments on 16 popular domains of the Amazon dataset, demonstrating that FedGCDR significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T12:19:51Z) - Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation [7.247438542823219]
CDR (Cross-Domain Recommendation) is a critical solution to data sparsity problem in recommendation system.
We present HGDR (Heterogeneous Graph-based Framework with Disentangled Representations Learning), an end-to-end heterogeneous network architecture.
Experiments on real-world datasets and online A/B tests prove that our proposed model can transmit information among domains effectively.
arXiv Detail & Related papers (2024-07-01T02:27:54Z) - A Privacy-Preserving Framework with Multi-Modal Data for Cross-Domain
Recommendation [13.33679167416221]
Cross-domain recommendation (CDR) aims to enhance recommendation accuracy in a target domain with sparse data.
We propose a Privacy-Preserving Framework with Multi-Modal Data for Cross-Domain Recommendation, called P2M2-CDR.
arXiv Detail & Related papers (2024-03-06T10:40:08Z) - FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling [15.159012729198619]
We propose FedHCDR, a novel Cross-Domain Recommendation framework with Hypergraph signal decoupling.
In this study, we introduce an approach called hypergraph signal decoupling (HSD) to decouple the user features into domain-exclusive and domain-shared features.
Extensive experiments conducted on three real-world scenarios demonstrate that FedHCDR outperforms existing baselines significantly.
arXiv Detail & Related papers (2024-03-05T03:40:39Z) - Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - Pre-training Graph Neural Network for Cross Domain Recommendation [58.057687253631826]
A recommender system predicts users' potential interests in items, where the core is to learn user/item embeddings.
Inspired by the contemporary arts in pre-training from graph representation learning, we propose a pre-training and fine-tuning diagram for cross-domain recommendation.
We devise a novel Pre-training Graph Neural Network for Cross-Domain Recommendation (PCRec), which adopts the contrastive self-supervised pre-training of a graph encoder.
arXiv Detail & Related papers (2021-11-16T07:34:42Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Deep Residual Correction Network for Partial Domain Adaptation [79.27753273651747]
Deep domain adaptation methods have achieved appealing performance by learning transferable representations from a well-labeled source domain to a different but related unlabeled target domain.
This paper proposes an efficiently-implemented Deep Residual Correction Network (DRCN)
Comprehensive experiments on partial, traditional and fine-grained cross-domain visual recognition demonstrate that DRCN is superior to the competitive deep domain adaptation approaches.
arXiv Detail & Related papers (2020-04-10T06:07:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.