Gradient is All You Need: Gradient-Based Attention Fusion for Infrared Small Target Detection
- URL: http://arxiv.org/abs/2409.19599v1
- Date: Sun, 29 Sep 2024 07:32:14 GMT
- Title: Gradient is All You Need: Gradient-Based Attention Fusion for Infrared Small Target Detection
- Authors: Chen Hu, Yian Huang, Kexuan Li, Luping Zhang, Yiming Zhu, Yufei Peng, Tian Pu, Zhenming Peng,
- Abstract summary: Infrared small target detection (IRSTD) is widely used in civilian and military applications.
We propose the Gradient Network (GaNet), which aims to extract and preserve edge and gradient information of small targets.
- Score: 12.291732476567192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared small target detection (IRSTD) is widely used in civilian and military applications. However, IRSTD encounters several challenges, including the tendency for small and dim targets to be obscured by complex backgrounds. To address this issue, we propose the Gradient Network (GaNet), which aims to extract and preserve edge and gradient information of small targets. GaNet employs the Gradient Transformer (GradFormer) module, simulating central difference convolutions (CDC) to extract and integrate gradient features with deeper features. Furthermore, we propose a global feature extraction model (GFEM) that offers a comprehensive perspective to prevent the network from focusing solely on details while neglecting the background information. We compare the network with state-of-the-art (SOTA) approaches, and the results demonstrate that our method performs effectively. Our source code is available at https://github.com/greekinRoma/Gradient-Transformer.
Related papers
- SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Improved Dense Nested Attention Network Based on Transformer for
Infrared Small Target Detection [8.388564430699155]
Infrared small target detection based on deep learning offers unique advantages in separating small targets from complex and dynamic backgrounds.
The features of infrared small targets gradually weaken as the depth of convolutional neural network (CNN) increases.
We propose improved dense nested attention network (IDNANet), which is based on the transformer architecture.
arXiv Detail & Related papers (2023-11-15T07:29:24Z) - Understanding Deep Gradient Leakage via Inversion Influence Functions [53.1839233598743]
Deep Gradient Leakage (DGL) is a highly effective attack that recovers private training images from gradient vectors.
We propose a novel Inversion Influence Function (I$2$F) that establishes a closed-form connection between the recovered images and the private gradients.
We empirically demonstrate that I$2$F effectively approximated the DGL generally on different model architectures, datasets, attack implementations, and perturbation-based defenses.
arXiv Detail & Related papers (2023-09-22T17:26:24Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
Single-frame infrared small target detection is considered to be a challenging task.
Due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small target.
We propose an enhancing feature learning network (EFLNet) to address these problems.
arXiv Detail & Related papers (2023-07-27T09:23:22Z) - ABC: Attention with Bilinear Correlation for Infrared Small Target
Detection [4.7379300868029395]
CNN based deep learning methods are not effective at segmenting infrared small target (IRST)
We propose a new model called attention with bilinear correlation (ABC)
ABC is based on the transformer architecture and includes a convolution linear fusion transformer (CLFT) module with a novel attention mechanism for feature extraction and fusion.
arXiv Detail & Related papers (2023-03-18T03:47:06Z) - Visual Explanations from Deep Networks via Riemann-Stieltjes Integrated
Gradient-based Localization [0.24596929878045565]
We introduce a new technique to produce visual explanations for the predictions of a CNN.
Our method can be applied to any layer of the network, and like Integrated Gradients it is not affected by the problem of vanishing gradients.
Compared to Grad-CAM, heatmaps produced by our algorithm are better focused in the areas of interest, and their numerical computation is more stable.
arXiv Detail & Related papers (2022-05-22T18:30:38Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - MobileSal: Extremely Efficient RGB-D Salient Object Detection [62.04876251927581]
This paper introduces a novel network, methodname, which focuses on efficient RGB-D salient object detection (SOD)
We propose an implicit depth restoration (IDR) technique to strengthen the feature representation capability of mobile networks for RGB-D SOD.
With IDR and CPR incorporated, methodnameperforms favorably against sArt methods on seven challenging RGB-D SOD datasets.
arXiv Detail & Related papers (2020-12-24T04:36:42Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - A Single Stream Network for Robust and Real-time RGB-D Salient Object
Detection [89.88222217065858]
We design a single stream network to use the depth map to guide early fusion and middle fusion between RGB and depth.
This model is 55.5% lighter than the current lightest model and runs at a real-time speed of 32 FPS when processing a $384 times 384$ image.
arXiv Detail & Related papers (2020-07-14T04:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.