EFLNet: Enhancing Feature Learning for Infrared Small Target Detection
- URL: http://arxiv.org/abs/2307.14723v2
- Date: Tue, 27 Feb 2024 12:19:09 GMT
- Title: EFLNet: Enhancing Feature Learning for Infrared Small Target Detection
- Authors: Bo Yang, Xinyu Zhang, Jian Zhang, Jun Luo, Mingliang Zhou, Yangjun Pi
- Abstract summary: Single-frame infrared small target detection is considered to be a challenging task.
Due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small target.
We propose an enhancing feature learning network (EFLNet) to address these problems.
- Score: 20.546186772828555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-frame infrared small target detection is considered to be a
challenging task, due to the extreme imbalance between target and background,
bounding box regression is extremely sensitive to infrared small target, and
target information is easy to lose in the high-level semantic layer. In this
article, we propose an enhancing feature learning network (EFLNet) to address
these problems. First, we notice that there is an extremely imbalance between
the target and the background in the infrared image, which makes the model pay
more attention to the background features rather than target features. To
address this problem, we propose a new adaptive threshold focal loss (ATFL)
function that decouples the target and the background, and utilizes the
adaptive mechanism to adjust the loss weight to force the model to allocate
more attention to target features. Second, we introduce the normalized Gaussian
Wasserstein distance (NWD) to alleviate the difficulty of convergence caused by
the extreme sensitivity of the bounding box regression to infrared small
target. Finally, we incorporate a dynamic head mechanism into the network to
enable adaptive learning of the relative importance of each semantic layer.
Experimental results demonstrate our method can achieve better performance in
the detection performance of infrared small target compared to the
state-of-the-art (SOTA) deep-learning-based methods. The source codes and
bounding box annotated datasets are available at
https://github.com/YangBo0411/infrared-small-target.
Related papers
- Infrared Small Target Detection based on Adjustable Sensitivity Strategy and Multi-Scale Fusion [2.661766509317245]
We propose a refined infrared small target detection scheme based on an adjustable sensitivity (AS) strategy and multi-scale fusion.
Specifically, a multi-scale model fusion framework based on multi-scale direction-aware network (MSDA-Net) is constructed.
This scheme won the first prize in the PRCV 2024 wide-area infrared small target detection competition.
arXiv Detail & Related papers (2024-07-29T15:22:02Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - SpirDet: Towards Efficient, Accurate and Lightweight Infrared Small
Target Detector [60.42293239557962]
We propose SpirDet, a novel approach for efficient detection of infrared small targets.
We employ a new dual-branch sparse decoder to restore the feature map.
Extensive experiments show that the proposed SpirDet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-02-08T05:06:14Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - ILNet: Low-level Matters for Salient Infrared Small Target Detection [5.248337726304453]
Infrared small target detection is a technique for finding small targets from infrared clutter background.
Due to the dearth of high-level semantic information, small infrared target features are weakened in the deep layers of the CNN.
We propose an infrared low-level network (ILNet) that considers infrared small targets as salient areas with little semantic information.
arXiv Detail & Related papers (2023-09-24T14:09:37Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - ABC: Attention with Bilinear Correlation for Infrared Small Target
Detection [4.7379300868029395]
CNN based deep learning methods are not effective at segmenting infrared small target (IRST)
We propose a new model called attention with bilinear correlation (ABC)
ABC is based on the transformer architecture and includes a convolution linear fusion transformer (CLFT) module with a novel attention mechanism for feature extraction and fusion.
arXiv Detail & Related papers (2023-03-18T03:47:06Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Learning Selective Mutual Attention and Contrast for RGB-D Saliency
Detection [145.4919781325014]
How to effectively fuse cross-modal information is the key problem for RGB-D salient object detection.
Many models use the feature fusion strategy but are limited by the low-order point-to-point fusion methods.
We propose a novel mutual attention model by fusing attention and contexts from different modalities.
arXiv Detail & Related papers (2020-10-12T08:50:10Z) - TBC-Net: A real-time detector for infrared small target detection using
semantic constraint [18.24737906712967]
Deep learning is rarely used in infrared small target detection due to the difficulty in learning small target features.
We propose a novel lightweight convolutional neural network TBC-Net for infrared small target detection.
arXiv Detail & Related papers (2019-12-27T05:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.