Storynizor: Consistent Story Generation via Inter-Frame Synchronized and Shuffled ID Injection
- URL: http://arxiv.org/abs/2409.19624v1
- Date: Sun, 29 Sep 2024 09:15:51 GMT
- Title: Storynizor: Consistent Story Generation via Inter-Frame Synchronized and Shuffled ID Injection
- Authors: Yuhang Ma, Wenting Xu, Chaoyi Zhao, Keqiang Sun, Qinfeng Jin, Zeng Zhao, Changjie Fan, Zhipeng Hu,
- Abstract summary: We introduce Storynizor, a model capable of generating coherent stories with strong inter-frame character consistency.
Key innovation of Storynizor lies in its key modules: ID-Synchronizer and ID-Injector.
To facilitate the training of Storynizor, we have curated a novel dataset called StoryDB comprising 100, 000 images.
- Score: 27.412361280397057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in text-to-image diffusion models have spurred significant interest in continuous story image generation. In this paper, we introduce Storynizor, a model capable of generating coherent stories with strong inter-frame character consistency, effective foreground-background separation, and diverse pose variation. The core innovation of Storynizor lies in its key modules: ID-Synchronizer and ID-Injector. The ID-Synchronizer employs an auto-mask self-attention module and a mask perceptual loss across inter-frame images to improve the consistency of character generation, vividly representing their postures and backgrounds. The ID-Injector utilize a Shuffling Reference Strategy (SRS) to integrate ID features into specific locations, enhancing ID-based consistent character generation. Additionally, to facilitate the training of Storynizor, we have curated a novel dataset called StoryDB comprising 100, 000 images. This dataset contains single and multiple-character sets in diverse environments, layouts, and gestures with detailed descriptions. Experimental results indicate that Storynizor demonstrates superior coherent story generation with high-fidelity character consistency, flexible postures, and vivid backgrounds compared to other character-specific methods.
Related papers
- Evolving Storytelling: Benchmarks and Methods for New Character Customization with Diffusion Models [79.21968152209193]
We introduce the NewEpisode benchmark to evaluate generative models' adaptability in generating new stories with fresh characters.
We propose EpicEvo, a method that customizes a diffusion-based visual story generation model with a single story featuring the new characters seamlessly integrating them into established character dynamics.
arXiv Detail & Related papers (2024-05-20T07:54:03Z) - InstantFamily: Masked Attention for Zero-shot Multi-ID Image Generation [0.0]
"InstantFamily" is an approach that employs a novel cross-attention mechanism and a multimodal embedding stack to achieve zero-shot multi-ID image generation.
Our method effectively preserves ID as it utilizes global and local features from a pre-trained face recognition model integrated with text conditions.
arXiv Detail & Related papers (2024-04-30T10:16:21Z) - Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm [31.06269858216316]
We propose Infinite-ID, an ID-semantics decoupling paradigm for identity-preserved personalization.
We introduce an identity-enhanced training, incorporating an additional image cross-attention module to capture sufficient ID information.
We also introduce a feature interaction mechanism that combines a mixed attention module with an AdaIN-mean operation to seamlessly merge the two streams.
arXiv Detail & Related papers (2024-03-18T13:39:53Z) - Masked Generative Story Transformer with Character Guidance and Caption
Augmentation [2.1392064955842023]
Story visualization is a challenging generative vision task, that requires both visual quality and consistency between different frames in generated image sequences.
Previous approaches either employ some kind of memory mechanism to maintain context throughout an auto-regressive generation of the image sequence, or model the generation of the characters and their background separately.
We propose a completely parallel transformer-based approach, relying on Cross-Attention with past and future captions to achieve consistency.
arXiv Detail & Related papers (2024-03-13T13:10:20Z) - Make-A-Story: Visual Memory Conditioned Consistent Story Generation [57.691064030235985]
We propose a novel autoregressive diffusion-based framework with a visual memory module that implicitly captures the actor and background context.
Our method outperforms prior state-of-the-art in generating frames with high visual quality.
Our experiments for story generation on the MUGEN, the PororoSV and the FlintstonesSV dataset show that our method not only outperforms prior state-of-the-art in generating frames with high visual quality, but also models appropriate correspondences between the characters and the background.
arXiv Detail & Related papers (2022-11-23T21:38:51Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
Story visualization aims to generate a sequence of images to narrate each sentence in a multi-sentence story.
Current works face the problem of semantic misalignment because of their fixed architecture and diversity of input modalities.
We explore the semantic alignment between text and image representations by learning to match their semantic levels in the GAN-based generative model.
arXiv Detail & Related papers (2022-11-14T11:41:44Z) - StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story
Continuation [76.44802273236081]
We develop a model StoryDALL-E for story continuation, where the generated visual story is conditioned on a source image.
We show that our retro-fitting approach outperforms GAN-based models for story continuation and facilitates copying of visual elements from the source image.
Overall, our work demonstrates that pretrained text-to-image synthesis models can be adapted for complex and low-resource tasks like story continuation.
arXiv Detail & Related papers (2022-09-13T17:47:39Z) - Word-Level Fine-Grained Story Visualization [58.16484259508973]
Story visualization aims to generate a sequence of images to narrate each sentence in a multi-sentence story with a global consistency across dynamic scenes and characters.
Current works still struggle with output images' quality and consistency, and rely on additional semantic information or auxiliary captioning networks.
We first introduce a new sentence representation, which incorporates word information from all story sentences to mitigate the inconsistency problem.
Then, we propose a new discriminator with fusion features to improve image quality and story consistency.
arXiv Detail & Related papers (2022-08-03T21:01:47Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
Given a series of natural language captions, an agent must generate a sequence of images that correspond to the captions.
Prior work has introduced recurrent generative models which outperform synthesis text-to-image models on this task.
We present a number of improvements to prior modeling approaches, including the addition of a dual learning framework.
arXiv Detail & Related papers (2021-05-20T20:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.