A multimodal LLM for the non-invasive decoding of spoken text from brain recordings
- URL: http://arxiv.org/abs/2409.19710v1
- Date: Sun, 29 Sep 2024 14:03:39 GMT
- Title: A multimodal LLM for the non-invasive decoding of spoken text from brain recordings
- Authors: Youssef Hmamouche, Ismail Chihab, Lahoucine Kdouri, Amal El Fallah Seghrouchni,
- Abstract summary: We propose and end-to-end multimodal LLM for decoding spoken text from fMRI signals.
The proposed architecture is founded on (i) an encoder derived from a specific transformer incorporating an augmented embedding layer for the encoder and a better-adjusted attention mechanism than that present in the state of the art.
A benchmark in performed on a corpus consisting of a set of interactions human-human and human-robot interactions where fMRI and conversational signals are recorded synchronously.
- Score: 0.4187344935012482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-related research topics in artificial intelligence have recently gained popularity, particularly due to the expansion of what multimodal architectures can do from computer vision to natural language processing. Our main goal in this work is to explore the possibilities and limitations of these architectures in spoken text decoding from non-invasive fMRI recordings. Contrary to vision and textual data, fMRI data represent a complex modality due to the variety of brain scanners, which implies (i) the variety of the recorded signal formats, (ii) the low resolution and noise of the raw signals, and (iii) the scarcity of pretrained models that can be leveraged as foundation models for generative learning. These points make the problem of the non-invasive decoding of text from fMRI recordings very challenging. In this paper, we propose and end-to-end multimodal LLM for decoding spoken text from fMRI signals. The proposed architecture is founded on (i) an encoder derived from a specific transformer incorporating an augmented embedding layer for the encoder and a better-adjusted attention mechanism than that present in the state of the art, and (ii) a frozen large language model adapted to align the embedding of the input text and the encoded embedding of brain activity to decode the output text. A benchmark in performed on a corpus consisting of a set of interactions human-human and human-robot interactions where fMRI and conversational signals are recorded synchronously. The obtained results are very promising, as our proposal outperforms the evaluated models, and is able to generate text capturing more accurate semantics present in the ground truth. The implementation code is provided in https://github.com/Hmamouche/brain_decode.
Related papers
- BrainECHO: Semantic Brain Signal Decoding through Vector-Quantized Spectrogram Reconstruction for Whisper-Enhanced Text Generation [29.78480739360263]
We propose a new multi-stage strategy for semantic brain signal decoding via vEctor-quantized speCtrogram reconstruction.
BrainECHO successively conducts: 1) autoencoding of the audio spectrogram; 2) Brain-audio latent space alignment; and 3) Semantic text generation via Whisper finetuning.
BrainECHO outperforms state-of-the-art methods under the same data split settings on two widely accepted resources.
arXiv Detail & Related papers (2024-10-19T04:29:03Z) - LLM4Brain: Training a Large Language Model for Brain Video Understanding [9.294352205183726]
We introduce an LLM-based approach for reconstructing visual-semantic information from fMRI signals elicited by video stimuli.
We employ fine-tuning techniques on an fMRI encoder equipped with adaptors to transform brain responses into latent representations aligned with the video stimuli.
In particular, we integrate self-supervised domain adaptation methods to enhance the alignment between visual-semantic information and brain responses.
arXiv Detail & Related papers (2024-09-26T15:57:08Z) - CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction [61.067153685104394]
Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech.
It still suffers from low speaker similarity and poor prosody naturalness.
We propose a multi-modal DSR model by leveraging neural language modeling to improve the reconstruction results.
arXiv Detail & Related papers (2024-06-12T15:42:21Z) - BrainChat: Decoding Semantic Information from fMRI using Vision-language Pretrained Models [0.0]
This paper proposes BrainChat, a generative framework aimed at rapidly accomplishing semantic information decoding tasks from brain activity.
BrainChat implements fMRI question answering and fMRI captioning.
BrainChat is highly flexible and can achieve high performance without image data, making it better suited for real-world scenarios with limited data.
arXiv Detail & Related papers (2024-06-10T12:06:15Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Language Reconstruction with Brain Predictive Coding from fMRI Data [28.217967547268216]
Theory of predictive coding suggests that human brain naturally engages in continuously predicting future word representations.
textscPredFT achieves current state-of-the-art decoding performance with a maximum BLEU-1 score of $27.8%$.
arXiv Detail & Related papers (2024-05-19T16:06:02Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMA is a novel approach that effectively incorporates acoustic information into text-based large language models.
We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines.
arXiv Detail & Related papers (2023-07-08T06:47:58Z) - UniCoRN: Unified Cognitive Signal ReconstructioN bridging cognitive
signals and human language [23.623579364849526]
We propose fMRI2text, the first openvocabulary task aiming to bridge fMRI time series and human language.
We present a baseline solution, UniCoRN: the Unified Cognitive Signal ReconstructioN for Brain Decoding.
Our model achieves a 34.77% BLEU score on fMRI2text, and a 37.04% BLEU when generalized to EEGto-text decoding.
arXiv Detail & Related papers (2023-07-06T05:26:49Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - VX2TEXT: End-to-End Learning of Video-Based Text Generation From
Multimodal Inputs [103.99315770490163]
We present a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio.
Experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks.
arXiv Detail & Related papers (2021-01-28T15:22:36Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
We propose a novel Bi-Decoder Augmented Network (BiDAN) for the neural machine translation task.
Since each decoder transforms the representations of the input text into its corresponding language, jointly training with two target ends can make the shared encoder has the potential to produce a language-independent semantic space.
arXiv Detail & Related papers (2020-01-14T02:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.