ANN-Enhanced Detection of Multipartite Entanglement in a Three-Qubit NMR Quantum Processor
- URL: http://arxiv.org/abs/2409.19739v1
- Date: Sun, 29 Sep 2024 15:34:11 GMT
- Title: ANN-Enhanced Detection of Multipartite Entanglement in a Three-Qubit NMR Quantum Processor
- Authors: Vaishali Gulati, Shivanshu Siyanwal, Arvind, Kavita Dorai,
- Abstract summary: We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state.
The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state.
- Score: 2.715284063484557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use an artificial neural network (ANN) model to identify the entanglement class of an experimentally generated three-qubit pure state drawn from one of the six inequivalent classes under stochastic local operations and classical communication (SLOCC). The ANN model is also able to detect the presence of genuinely multipartite entanglement (GME) in the state. We apply data science techniques to reduce the dimensionality of the problem, which corresponds to a reduction in the number of required density matrix elements to be computed. The ANN model is first trained on a simulated dataset containing randomly generated states, and is later tested and validated on noisy experimental three-qubit states cast in the canonical form and generated on a nuclear magnetic resonance (NMR) quantum processor. We benchmark the ANN model via Support Vector Machines (SVMs) and K-Nearest Neighbor (KNN) algorithms and compare the results of our ANN-based entanglement classification with existing three-qubit SLOCC entanglement classification schemes such as 3-tangle and correlation tensors. Our results demonstrate that the ANN model can perform GME detection and SLOCC class identification with high accuracy, using a priori knowledge of only a few density matrix elements as inputs. Since the ANN model works well with a reduced input dataset, it is an attractive method for entanglement classification in real-life situations with limited experimental data sets.
Related papers
- Entanglement Classification of Arbitrary Three-Qubit States via Artificial Neural Networks [2.715284063484557]
We design and implement artificial neural networks (ANNs) to detect and classify entanglement for three-qubit systems.
The models are trained and validated on a simulated dataset of randomly generated states.
Remarkably, we find that feeding only 7 diagonal elements of the density matrix into the ANN results in an accuracy greater than 94% for both tasks.
arXiv Detail & Related papers (2024-11-18T06:50:10Z) - Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
We propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation.
Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers.
Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T06:48:01Z) - 3D-CLMI: A Motor Imagery EEG Classification Model via Fusion of 3D-CNN
and LSTM with Attention [0.174048653626208]
This paper proposed a model that combined a three-dimensional convolutional neural network (CNN) with a long short-term memory (LSTM) network to classify motor imagery (MI) signals.
Experimental results showed that this model achieved a classification accuracy of 92.7% and an F1-score of 0.91 on the public dataset BCI Competition IV dataset 2a.
The model greatly improved the classification accuracy of users' motor imagery intentions, giving brain-computer interfaces better application prospects in emerging fields such as autonomous vehicles and medical rehabilitation.
arXiv Detail & Related papers (2023-12-20T03:38:24Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Identification of quantum entanglement with Siamese convolutional neural networks and semi-supervised learning [0.0]
Quantum entanglement is a fundamental property commonly used in various quantum information protocols and algorithms.
In this study, we use deep convolutional NNs, a type of supervised machine learning, to identify quantum entanglement for any bi Partition in a 3-qubit system.
arXiv Detail & Related papers (2022-10-13T23:17:55Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer
Learning [67.40866334083941]
We propose an end-to-end 3-D lightweight convolutional neural network (CNN) for limited samples-based HSI classification.
Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost.
Our model achieves competitive performance for HSI classification compared to several state-of-the-art methods.
arXiv Detail & Related papers (2020-12-07T03:44:35Z) - Regularizing Recurrent Neural Networks via Sequence Mixup [7.036759195546171]
We extend a class of celebrated regularization techniques originally proposed for feed-forward neural networks.
Our proposed methods are easy to implement complexity, while leverage the performance of simple neural architectures.
arXiv Detail & Related papers (2020-11-27T05:43:40Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics.
In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method.
Our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods.
arXiv Detail & Related papers (2020-08-20T17:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.