Offline Signature Verification Based on Feature Disentangling Aided Variational Autoencoder
- URL: http://arxiv.org/abs/2409.19754v1
- Date: Sun, 29 Sep 2024 19:54:47 GMT
- Title: Offline Signature Verification Based on Feature Disentangling Aided Variational Autoencoder
- Authors: Hansong Zhang, Jiangjian Guo, Kun Li, Yang Zhang, Yimei Zhao,
- Abstract summary: Main tasks of signature verification systems include extracting features from signature images and training a classifier for classification.
The instances of skilled forgeries are often unavailable, when signature verification models are being trained.
This paper proposes a new signature verification method using a variational autoencoder (VAE) to extract features directly from signature images.
- Score: 6.128256936054622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline handwritten signature verification systems are used to verify the identity of individuals, through recognizing their handwritten signature image as genuine signatures or forgeries. The main tasks of signature verification systems include extracting features from signature images and training a classifier for classification. The challenges of these tasks are twofold. First, genuine signatures and skilled forgeries are highly similar in their appearances, resulting in a small inter-class distance. Second, the instances of skilled forgeries are often unavailable, when signature verification models are being trained. To tackle these problems, this paper proposes a new signature verification method. It is the first model that employs a variational autoencoder (VAE) to extract features directly from signature images. To make the features more discriminative, it improves the traditional VAEs by introducing a new loss function for feature disentangling. In addition, it relies on SVM (Support Vector Machine) for classification according to the extracted features. Extensive experiments are conducted on two public datasets: MCYT-75 and GPDS-synthetic where the proposed method significantly outperformed $13$ representative offline signature verification methods. The achieved improvement in distinctive datasets indicates the robustness and great potential of the developed system in real application.
Related papers
- Enhanced Bank Check Security: Introducing a Novel Dataset and Transformer-Based Approach for Detection and Verification [11.225067563482169]
We introduce a novel dataset specifically designed for signature verification on bank checks.
This dataset includes a variety of signature styles embedded within typical check elements.
We propose a novel approach for writer-independent signature verification using an object detection network.
arXiv Detail & Related papers (2024-06-20T14:42:14Z) - Investigating the Common Authorship of Signatures by Off-Line Automatic Signature Verification Without the Use of Reference Signatures [3.3498759480099856]
This paper addresses the problem of automatic signature verification when no reference signatures are available.
The scenario we explore consists of a set of signatures, which could be signed by the same author or by multiple signers.
We discuss three methods which estimate automatically the common authorship of a set of off-line signatures.
arXiv Detail & Related papers (2024-05-23T10:30:48Z) - ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
Identity-preserving text-to-image generation (ID-T2I) has received significant attention due to its wide range of application scenarios like AI portrait and advertising.
We present textbfID-Aligner, a general feedback learning framework to enhance ID-T2I performance.
arXiv Detail & Related papers (2024-04-23T18:41:56Z) - Exploring Fine-Grained Representation and Recomposition for Cloth-Changing Person Re-Identification [78.52704557647438]
We propose a novel FIne-grained Representation and Recomposition (FIRe$2$) framework to tackle both limitations without any auxiliary annotation or data.
Experiments demonstrate that FIRe$2$ can achieve state-of-the-art performance on five widely-used cloth-changing person Re-ID benchmarks.
arXiv Detail & Related papers (2023-08-21T12:59:48Z) - Same or Different? Diff-Vectors for Authorship Analysis [78.83284164605473]
In classic'' authorship analysis a feature vector represents a document, the value of a feature represents (an increasing function of) the relative frequency of the feature in the document, and the class label represents the author of the document.
Our experiments tackle same-author verification, authorship verification, and closed-set authorship attribution; while DVs are naturally geared for solving the 1st, we also provide two novel methods for solving the 2nd and 3rd.
arXiv Detail & Related papers (2023-01-24T08:48:12Z) - IDPS Signature Classification with a Reject Option and the Incorporation
of Expert Knowledge [3.867363075280544]
We propose and evaluate a machine learning signature classification model with a reject option (RO) to reduce the cost of setting up an intrusion detection and prevention system (IDPS)
To train the proposed model, it is essential to design features that are effective for signature classification.
The effectiveness of the proposed classification model is evaluated in experiments with two real datasets composed of signatures labeled by experts.
arXiv Detail & Related papers (2022-07-19T06:09:33Z) - Dynamic Prototype Mask for Occluded Person Re-Identification [88.7782299372656]
Existing methods mainly address this issue by employing body clues provided by an extra network to distinguish the visible part.
We propose a novel Dynamic Prototype Mask (DPM) based on two self-evident prior knowledge.
Under this condition, the occluded representation could be well aligned in a selected subspace spontaneously.
arXiv Detail & Related papers (2022-07-19T03:31:13Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
We encode the semantic correlation among classes into the classification head by initializing the weights with language embeddings of HOIs.
We propose a new loss named LSE-Sign to enhance multi-label learning on a long-tailed dataset.
Our simple yet effective method enables detection-free HOI classification, outperforming the state-of-the-arts that require object detection and human pose by a clear margin.
arXiv Detail & Related papers (2022-03-10T23:35:00Z) - SURDS: Self-Supervised Attention-guided Reconstruction and Dual Triplet
Loss for Writer Independent Offline Signature Verification [16.499360910037904]
Offline Signature Verification (OSV) is a fundamental biometric task across various forensic, commercial and legal applications.
We propose a two-stage deep learning framework that leverages self-supervised representation learning as well as metric learning for writer-independent OSV.
The proposed framework has been evaluated on two publicly available offline signature datasets and compared with various state-of-the-art methods.
arXiv Detail & Related papers (2022-01-25T07:26:55Z) - Dual-Refinement: Joint Label and Feature Refinement for Unsupervised
Domain Adaptive Person Re-Identification [51.98150752331922]
Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data.
We propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase.
Our method outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-12-26T07:35:35Z) - Offline Signature Verification on Real-World Documents [9.271640666465363]
Signatures extracted from formal documents may contain different types of occlusions, for example, stamps, company seals, ruling lines, and signature boxes.
In this paper, we address a real-world writer independent offline signature verification problem, in which, a bank's customers' transaction request documents that contain their occluded signatures are compared with their clean reference signatures.
Our proposed method consists of two main components, a stamp cleaning method based on CycleGAN and signature representation based on CNNs.
arXiv Detail & Related papers (2020-04-25T10:28:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.