論文の概要: Advances in Privacy Preserving Federated Learning to Realize a Truly Learning Healthcare System
- arxiv url: http://arxiv.org/abs/2409.19756v1
- Date: Sun, 29 Sep 2024 20:02:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 17:49:48.522852
- Title: Advances in Privacy Preserving Federated Learning to Realize a Truly Learning Healthcare System
- Title(参考訳): 完全学習型医療システムを実現するためのフェデレーションラーニングのためのプライバシの進歩
- Authors: Ravi Madduri, Zilinghan Li, Tarak Nandi, Kibaek Kim, Minseok Ryu, Alex Rodriguez,
- Abstract要約: 学習医療システム(LHS)の概念は、患者医療からのマルチモーダルデータを継続的に分析し、将来の医療成果を高める自己改善ネットワークを構想している。
プライバシ保護フェデレートラーニング(PPFL)は変革的で有望なアプローチであり、これらの課題に対処する可能性がある。
本稿では,医学研究所 (IOM) Roundtable が定義した,真の LHS を実現するために,PPFL を医療エコシステムに統合するビジョンを提案する。
- 参考スコア(独自算出の注目度): 0.2748450182087935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The concept of a learning healthcare system (LHS) envisions a self-improving network where multimodal data from patient care are continuously analyzed to enhance future healthcare outcomes. However, realizing this vision faces significant challenges in data sharing and privacy protection. Privacy-Preserving Federated Learning (PPFL) is a transformative and promising approach that has the potential to address these challenges by enabling collaborative learning from decentralized data while safeguarding patient privacy. This paper proposes a vision for integrating PPFL into the healthcare ecosystem to achieve a truly LHS as defined by the Institute of Medicine (IOM) Roundtable.
- Abstract(参考訳): 学習医療システム(LHS)の概念は、患者医療からのマルチモーダルデータを継続的に分析し、将来の医療成果を高める自己改善ネットワークを構想している。
しかし、このビジョンを実現することは、データ共有とプライバシ保護において大きな課題に直面している。
プライバシ保護フェデレーションラーニング(PPFL)は、患者プライバシを保護しながら、分散データからの協調的な学習を可能にすることによって、これらの課題に対処する可能性を秘めている、変革的で有望なアプローチである。
本稿では,医学研究所 (IOM) Roundtable が定義した,真の LHS を実現するために,PPFL を医療エコシステムに統合するビジョンを提案する。
関連論文リスト
- Federated Learning in Healthcare: Model Misconducts, Security, Challenges, Applications, and Future Research Directions -- A Systematic Review [2.710010611878837]
フェデレートラーニング(FL)は、複数の医療機関が共有することなく、分散データから共同で学ぶことを可能にする。
FLの医療分野は、疾患予測、治療のカスタマイズ、臨床試験研究などの分野をカバーしている。
FLの実装は、非IIDデータ環境におけるモデル収束、通信オーバーヘッド、複数機関の協調管理など、課題を提起する。
論文 参考訳(メタデータ) (2024-05-22T16:59:50Z) - Integration of Federated Learning and Blockchain in Healthcare: A Tutorial [0.5592394503914488]
このチュートリアルでは、FLとBCの統合を調査し、医療分析に対するセキュアでプライバシ保護のアプローチを提供する。
FLは、医療機関のローカルデバイス上での分散モデルトレーニングを可能にし、患者のデータをローカライズする。
BCは、改ざん防止の台帳とスマートコントラクトによって、FLで安全な協調学習のための堅牢なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-04-15T19:00:09Z) - Retrieval Augmented Thought Process for Private Data Handling in Healthcare [53.89406286212502]
Retrieval-Augmented Thought Process (RATP)を紹介する。
RATPは大規模言語モデル(LLM)の思考生成を定式化する
電子カルテのプライベートデータセットにおいて、RATPは、質問応答タスクのコンテキスト内検索強化生成と比較して35%の精度を達成している。
論文 参考訳(メタデータ) (2024-02-12T17:17:50Z) - Multimodal Federated Learning in Healthcare: a Review [5.983768682145731]
フェデレートラーニング(FL)は、データを統合する必要のない分散メカニズムを提供する。
本稿では,医療分野におけるマルチモーダル・フェデレート・ラーニング(MMFL)の現状について概説する。
最先端のAI技術と、医療アプリケーションにおける患者のデータプライバシの必要性のギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2023-10-14T19:43:06Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
医療におけるプライバシー保護機械学習(PPML)に関する最近の文献を概観する。
プライバシ保護トレーニングと推論・アズ・ア・サービスに重点を置いています。
このレビューの目的は、医療におけるプライベートかつ効率的なMLモデルの開発をガイドすることである。
論文 参考訳(メタデータ) (2023-03-27T19:20:51Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Federated Learning for Privacy Preservation in Smart Healthcare Systems:
A Comprehensive Survey [6.824747267214373]
プライバシー保護のためのIoMTネットワークにおけるFLの役割について述べる。
本稿では、プライバシーの脅威を検出するために、深層強化学習(DRL)、デジタルツイン、GAN(Generative Adversarial Network)を取り入れた高度なFLアーキテクチャを紹介する。
論文 参考訳(メタデータ) (2022-03-18T02:32:05Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。