Spiking Transformer with Spatial-Temporal Attention
- URL: http://arxiv.org/abs/2409.19764v2
- Date: Mon, 25 Nov 2024 21:22:40 GMT
- Title: Spiking Transformer with Spatial-Temporal Attention
- Authors: Donghyun Lee, Yuhang Li, Youngeun Kim, Shiting Xiao, Priyadarshini Panda,
- Abstract summary: Spike-based Transformer presents a compelling and energy-efficient alternative to traditional Artificial Neural Network (ANN)-based Transformers.
We propose Spiking Transformer with Spatial-Temporal Attention (STAtten), a simple and straightforward architecture that efficiently integrates both spatial and temporal information in the self-attention mechanism.
Our method can be seamlessly integrated into existing spike-based transformers without architectural overhaul.
- Score: 26.7175155847563
- License:
- Abstract: Spike-based Transformer presents a compelling and energy-efficient alternative to traditional Artificial Neural Network (ANN)-based Transformers, achieving impressive results through sparse binary computations. However, existing spike-based transformers predominantly focus on spatial attention while neglecting crucial temporal dependencies inherent in spike-based processing, leading to suboptimal feature representation and limited performance. To address this limitation, we propose Spiking Transformer with Spatial-Temporal Attention (STAtten), a simple and straightforward architecture that efficiently integrates both spatial and temporal information in the self-attention mechanism. STAtten introduces a block-wise computation strategy that processes information in spatial-temporal chunks, enabling comprehensive feature capture while maintaining the same computational complexity as previous spatial-only approaches. Our method can be seamlessly integrated into existing spike-based transformers without architectural overhaul. Extensive experiments demonstrate that STAtten significantly improves the performance of existing spike-based transformers across both static and neuromorphic datasets, including CIFAR10/100, ImageNet, CIFAR10-DVS, and N-Caltech101.
Related papers
- STGformer: Efficient Spatiotemporal Graph Transformer for Traffic Forecasting [11.208740750755025]
Traffic is a cornerstone of smart city management enabling efficient allocation and transportation planning.
Deep learning, with its ability to capture complex nonlinear patterns in data, has emerged as a powerful tool for traffic forecasting.
graph neural networks (GCNs) and transformer-based models have shown promise, but their computational demands often hinder their application to realworld networks.
We propose a noveltemporal graph transformer (STG) architecture, enabling efficient modeling of both global and local traffic patterns while maintaining a manageable computational footprint.
arXiv Detail & Related papers (2024-10-01T04:15:48Z) - Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
Window-based transformers have demonstrated outstanding performance in super-resolution tasks.
They exhibit higher computational complexity and inference latency than convolutional neural networks.
We construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet)
arXiv Detail & Related papers (2024-09-26T07:24:09Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - PointMT: Efficient Point Cloud Analysis with Hybrid MLP-Transformer Architecture [46.266960248570086]
This study tackles the quadratic complexity of the self-attention mechanism by introducing a complexity local attention mechanism for effective feature aggregation.
We also introduce a parameter-free channel temperature adaptation mechanism that adaptively adjusts the attention weight distribution in each channel.
We show that PointMT achieves performance comparable to state-of-the-art methods while maintaining an optimal balance between performance and accuracy.
arXiv Detail & Related papers (2024-08-10T10:16:03Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Video Frame Interpolation Transformer [86.20646863821908]
We propose a Transformer-based video framework that allows content-aware aggregation weights and considers long-range dependencies with the self-attention operations.
To avoid the high computational cost of global self-attention, we introduce the concept of local attention into video.
In addition, we develop a multi-scale frame scheme to fully realize the potential of Transformers.
arXiv Detail & Related papers (2021-11-27T05:35:10Z) - TCCT: Tightly-Coupled Convolutional Transformer on Time Series
Forecasting [6.393659160890665]
We propose the concept of tightly-coupled convolutional Transformer(TCCT) and three TCCT architectures.
Our experiments on real-world datasets show that our TCCT architectures could greatly improve the performance of existing state-of-art Transformer models.
arXiv Detail & Related papers (2021-08-29T08:49:31Z) - NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series
Forecasting [24.510978166050293]
This work is the first attempt to propose a Non-Autoregressive Transformer architecture for time series forecasting.
We present a novel spatial-temporal attention mechanism, building a bridge by a learned temporal influence map to fill the gaps between the spatial and temporal attention.
arXiv Detail & Related papers (2021-02-10T18:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.