Gradient descent with adaptive stepsize converges (nearly) linearly under fourth-order growth
- URL: http://arxiv.org/abs/2409.19791v1
- Date: Sun, 29 Sep 2024 21:27:00 GMT
- Title: Gradient descent with adaptive stepsize converges (nearly) linearly under fourth-order growth
- Authors: Damek Davis, Dmitriy Drusvyatskiy, Liwei Jiang,
- Abstract summary: We show that gradient descent with an adaptive stepsize converges at a local (nearly) linear rate on any smooth function.
The adaptive stepsize we propose arises from an intriguing decomposition theorem.
- Score: 12.452887246184318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A prevalent belief among optimization specialists is that linear convergence of gradient descent is contingent on the function growing quadratically away from its minimizers. In this work, we argue that this belief is inaccurate. We show that gradient descent with an adaptive stepsize converges at a local (nearly) linear rate on any smooth function that merely exhibits fourth-order growth away from its minimizer. The adaptive stepsize we propose arises from an intriguing decomposition theorem: any such function admits a smooth manifold around the optimal solution -- which we call the ravine -- so that the function grows at least quadratically away from the ravine and has constant order growth along it. The ravine allows one to interlace many short gradient steps with a single long Polyak gradient step, which together ensure rapid convergence to the minimizer. We illustrate the theory and algorithm on the problems of matrix sensing and factorization and learning a single neuron in the overparameterized regime.
Related papers
- Directional Smoothness and Gradient Methods: Convergence and Adaptivity [16.779513676120096]
We develop new sub-optimality bounds for gradient descent that depend on the conditioning of the objective along the path of optimization.
Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective.
We prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness.
arXiv Detail & Related papers (2024-03-06T22:24:05Z) - Non-Uniform Smoothness for Gradient Descent [5.64297382055816]
We introduce a local first-order smoothness oracle (LFSO) which generalizes the Lipschitz continuous gradient smoothness condition.
We show that this oracle can encode all relevant problem information for tuning stepsizes for a suitably modified gradient descent method.
We also show that LFSOs in this modified first-order method can yield global linear convergence rates for non-strongly convex problems with extremely flat minima.
arXiv Detail & Related papers (2023-11-15T00:44:08Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - MinMax Networks [0.0]
This paper describes an alternative discrete MinMax learning approach for continuous piece-wise linear functions.
We show that the convergence rate of a constrained piece-wise linear function learning is equivalent to the exponential convergence rates of the individual local linear regions.
arXiv Detail & Related papers (2023-06-15T16:30:33Z) - Proximal Gradient Descent-Ascent: Variable Convergence under K{\L}
Geometry [49.65455534654459]
The finite descent-ascent parameters (GDA) has been widely applied to solve minimax optimization problems.
This paper fills such a gap by studying the convergence of the KL-Lized geometry.
arXiv Detail & Related papers (2021-02-09T05:35:53Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.